| Overall Statistics |
|
Total Trades 49 Average Win 1.58% Average Loss -1.04% Compounding Annual Return 21.266% Drawdown 8.200% Expectancy 0.642 Net Profit 21.266% Sharpe Ratio 1.36 Loss Rate 35% Win Rate 65% Profit-Loss Ratio 1.52 Alpha 0.012 Beta 0.706 Annual Standard Deviation 0.12 Annual Variance 0.014 Information Ratio -0.51 Tracking Error 0.101 Treynor Ratio 0.232 Total Fees $242.28 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Data.UniverseSelection import *
from datetime import datetime
import decimal as d
import pandas as pd
### <summary>
### In this algortihm we show how you can easily use the universe selection feature to fetch symbols
### to be traded using the BaseData custom data system in combination with the AddUniverse{T} method.
### AddUniverse{T} requires a function that will return the symbols to be traded.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="universes" />
### <meta name="tag" content="custom universes" />
class DropboxUniverseSelectionAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013,1,1)
self.SetEndDate(2013,12,31)
self.backtestSymbolsPerDay = None
self.current_universe = []
self.UniverseSettings.Resolution = Resolution.Daily;
self.AddUniverse("my-dropbox-universe", self.selector)
self.Debug("Initializing, universe = " + ', '.join(self.current_universe))
def selector(self, data):
# handle live mode file format
if self.LiveMode:
# fetch the file from dropbox
url = "https://www.dropbox.com/s/2az14r5xbx4w5j6/daily-stock-picker-live.csv?dl=1"
df = pd.read_csv(url, header = None)
# if we have a file for today, return symbols
if not df.empty:
self.current_universe = df.iloc[0,:].tolist()
# no symbol today, leave universe unchanged
return self.current_universe
# backtest - first cache the entire file
if self.backtestSymbolsPerDay is None:
url = "https://www.dropbox.com/s/rmiiktz0ntpff3a/daily-stock-picker-backtest.csv?dl=1"
self.backtestSymbolsPerDay = pd.read_csv(url, header = None, index_col = 0)
index = int(data.strftime("%Y%m%d"))
if index in self.backtestSymbolsPerDay.index:
self.current_universe = self.backtestSymbolsPerDay.loc[index,:].dropna().tolist()
return self.current_universe
def OnData(self, slice):
if slice.Bars.Count == 0: return
if self.changes == None: return
# start fresh
self.Liquidate()
percentage = 1 / d.Decimal(slice.Bars.Count)
for tradeBar in slice.Bars.Values:
self.SetHoldings(tradeBar.Symbol, percentage)
# reset changes
self.changes = None
def OnSecuritiesChanged(self, changes):
self.changes = changes