| Overall Statistics |
|
Total Trades 219 Average Win 2.98% Average Loss -0.98% Compounding Annual Return 13.442% Drawdown 18.300% Expectancy 0.872 Net Profit 141.947% Sharpe Ratio 0.852 Loss Rate 54% Win Rate 46% Profit-Loss Ratio 3.04 Alpha 0.113 Beta -0.007 Annual Standard Deviation 0.132 Annual Variance 0.017 Information Ratio 0.136 Tracking Error 0.244 Treynor Ratio -16.168 Total Fees $647.67 |
import clr
clr.AddReference("System")
clr.AddReference("QuantConnect.Algorithm")
clr.AddReference("QuantConnect.Indicators")
clr.AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
### <summary>
### In this example we look at the canonical 15/30 day moving average cross. This algorithm
### will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses
### back below the 30.
### </summary>
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
### <meta name="tag" content="moving average cross" />
### <meta name="tag" content="strategy example" />
class MovingAverageCrossAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2008, 1, 1) #Set Start Date
self.SetEndDate(2015, 1, 1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY")
self.AddEquity("GOOGL")
self.AddEquity("AMZN")
self.AddEquity("MSFT")
self.AddEquity("AAPL")
# create a 15 day exponential moving average
self.fast = self.EMA("SPY", 15, Resolution.Daily)
self.fasta = self.EMA("GOOGL", 15, Resolution.Daily)
self.fastb = self.EMA("AMZN", 15, Resolution.Daily)
self.fastc = self.EMA("MSFT", 15, Resolution.Daily)
self.fastd = self.EMA("AAPL", 15, Resolution.Daily)
# create a 30 day exponential moving average
self.slow = self.EMA("SPY", 30, Resolution.Daily)
self.slowa = self.EMA("GOOGL", 30, Resolution.Daily)
self.slowb = self.EMA("AMZN", 30, Resolution.Daily)
self.slowc = self.EMA("MSFT", 30, Resolution.Daily)
self.slowd = self.EMA("AAPL", 30, Resolution.Daily)
self.previous = None
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# a couple things to notice in this method:
# 1. We never need to 'update' our indicators with the data, the engine takes care of this for us
# 2. We can use indicators directly in math expressions
# 3. We can easily plot many indicators at the same time
# wait for our slow and fast ema to fully initialize
if not self.slow.IsReady:
return
if not self.fast.IsReady:
return
if not self.slowa.IsReady:
return
if not self.fasta.IsReady:
return
if not self.slowb.IsReady:
return
if not self.fastb.IsReady:
return
if not self.slowc.IsReady:
return
if not self.fastc.IsReady:
return
if not self.slowd.IsReady:
return
if not self.fastd.IsReady:
return
# only once per day
if self.previous is not None and self.previous.date() == self.Time.date():
return
# define a small tolerance on our checks to avoid bouncing
tolerance = 0.00015
holdings = self.Portfolio["SPY"].Quantity
holdingsa = self.Portfolio["GOOGL"].Quantity
holdingsb = self.Portfolio["AMZN"].Quantity
holdingsc = self.Portfolio["MSFT"].Quantity
holdingsd = self.Portfolio["AAPL"].Quantity
# we only want to go long if we're currently short or flat
if holdings <= 0:
# if the fast is greater than the slow, we'll go long
if self.fast.Current.Value > self.slow.Current.Value *(1 + tolerance):
self.Log("BUY SPY >> {0}".format(self.Securities["SPY"].Price))
self.SetHoldings("SPY", .2)
if holdingsa <= 0:
if self.fasta.Current.Value > self.slowa.Current.Value *(1 + tolerance):
self.Log("BUY GOOGL >> {0}".format(self.Securities["GOOGL"].Price))
self.SetHoldings("GOOGL", .2)
if holdingsb <= 0:
if self.fastb.Current.Value > self.slowb.Current.Value *(1 + tolerance):
self.Log("BUY AMZN >> {0}".format(self.Securities["AMZN"].Price))
self.SetHoldings("AMZN", .2)
if holdingsc <= 0:
if self.fastc.Current.Value > self.slowc.Current.Value *(1 + tolerance):
self.Log("BUY MSFT >> {0}".format(self.Securities["MSFT"].Price))
self.SetHoldings("MSFT", .2)
if holdingsd <= 0:
if self.fastd.Current.Value > self.slowd.Current.Value *(1 + tolerance):
self.Log("BUY AAPL >> {0}".format(self.Securities["AAPL"].Price))
self.SetHoldings("AAPL", .2)
# we only want to liquidate if we're currently long
# if the fast is less than the slow we'll liquidate our long
if holdings > 0 and self.fast.Current.Value < self.slow.Current.Value:
self.Log("SELL SPY >> {0}".format(self.Securities["SPY"].Price))
self.Liquidate("SPY")
if holdingsa > 0 and self.fasta.Current.Value < self.slowa.Current.Value:
self.Log("SELL GOOGL >> {0}".format(self.Securities["GOOGL"].Price))
self.Liquidate("GOOGL")
if holdingsb > 0 and self.fastb.Current.Value < self.slowb.Current.Value:
self.Log("SELL AMZN >> {0}".format(self.Securities["AMZN"].Price))
self.Liquidate("AMZN")
if holdingsc > 0 and self.fastc.Current.Value < self.slowc.Current.Value:
self.Log("SELL MSFT >> {0}".format(self.Securities["MSFT"].Price))
self.Liquidate("MSFT")
if holdingsd > 0 and self.fastd.Current.Value < self.slowd.Current.Value:
self.Log("SELL AAPL >> {0}".format(self.Securities["AAPL"].Price))
self.Liquidate("AAPL")
self.previous = self.Time