| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.668 Tracking Error 0.137 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
# Rolling Window Consolidated Bar Data
import numpy as np
class RollingWindowBarData(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 5, 1)
self.SetEndDate(2021, 5, 28)
self.SetCash(10000)
self.SetWarmUp(10)
self.sym = self.AddEquity('AMD', Resolution.Minute, Market.USA, True, 1, False).Symbol
self.rollingWindow = RollingWindow[TradeBar](2)
self.consolidator = TradeBarConsolidator(timedelta(1))
self.Consolidate(self.sym, Resolution.Daily, self.CustomBarHandler)
self.SubscriptionManager.AddConsolidator(self.sym, self.consolidator)
def CustomBarHandler(self, bar):
self.rollingWindow.Add(bar)
def OnData(self, data):
if self.IsWarmingUp : return
if not self.rollingWindow.IsReady: return
if not (self.Time.hour == 9 and self.Time.minute == 31): return
O = np.array([self.rollingWindow[i].Open for i in range(2)])
C = np.array([self.rollingWindow[i].Close for i in range(2)])
yesterday_close = C[0]
today_open = self.consolidator.WorkingBar.Open
self.Plot("Gaps", "today_gap_pct", float(100*(self.consolidator.WorkingBar.Open / C[0] -1)))
self.Plot("Gaps", "yest_gap_pct", float(100*(O[0] / C[1] -1)))
self.Plot("Gaps", "zero", 0.0)
self.Debug(f"at {data.Time}, yest close: {yesterday_close}; today open: {today_open}")