| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm.Framework")
from System import *
from QuantConnect import *
from QuantConnect.Data import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from System.Collections.Generic import List
import pandas as pd
class PublicHelp(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017,1,1) #Set Start Date
self.SetEndDate(2017, 1, 20) # Set End Date
#self.SetEndDate(datetime.now().date() - timedelta(1)) #Set End Date
#self.SetEndDate(2013,1,1) #Set End Date
self.SetCash(150000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Hour
self.averages = {};
self.AddEquity("SPY", Resolution.Hour)
self.AddUniverse(self.CoarseSelectionFunction)
#Universe Filter
# sort the data by volume and price, apply the moving average crossver, and take the top 24 sorted results based on breakout magnitude
def CoarseSelectionFunction(self, coarse):
filtered = [ x for x in coarse if (x.DollarVolume > 50000000) ]
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in filtered:
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolData(cf.Symbol, self)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
history = self.History(cf.Symbol, 16)
if str(cf.Symbol) in history.index:
avg.WarmUpIndicators(history.loc[str(cf.Symbol)])
avg.update(cf.EndTime, cf.AdjustedPrice)
# Filter the values of the dict: we only want up-trending securities
values = list(filter(lambda x: x.is_uptrend, self.averages.values()))
# Sorts the values of the dict: we want those with greater difference between the moving averages
values.sort(key=lambda x: x.scale, reverse=True)
for x in values[:200]:
self.Log('symbol: ' + str(x.symbol.Value) + ' scale: ' + str(x.scale))
# we need to return only the symbol objects
return [ x.symbol for x in values[:200] ]
# this event fires whenever we have changes to our universe
def OnSecuritiesChanged(self, changes):
self.changes = changes
# liquidate removed securities
for security in changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
#EMA Crossover Class
class SymbolData(object):
def __init__(self, symbol, algo):
self.symbol = symbol
self.fast = ExponentialMovingAverage(50)
self.slow = ExponentialMovingAverage(200)
self.is_uptrend = False
self.scale = None
self.algo = algo
def update(self, time, value):
if self.fast.Update(time, value) and self.slow.Update(time, value):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
self.is_uptrend = (fast / slow) > 1.00
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)
def WarmUpIndicators(self, history):
for index in history.index:
self.fast.Update(index, history.loc[index].close)
self.slow.Update(index, history.loc[index].close)