| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// 1. adding SMA
/// </summary>
public class FindValue1 : QCAlgorithm
{
private const int _numberOfSymbolsCoarse = 100;
private const int _numberOfSymbolsFine = 5;
private const decimal _investmentAmt = .2m;
private const int _minVolume = -1; //200000;
private const decimal _minPrice = -1; // 1m;
private const decimal _maxPrice = -1; //100;
private const decimal _maxPbRatio = -1; // .99m;
private const decimal _maxPeRatio = -1; //18.49m;
private const decimal _yieldGrowthMinPct = -1; // .3m;
private const string _sortType = "PB";
private const string _sortDir = "DESC";
private const int _smaPeriod = 50;
//private const int _minVolume =
// initialize our changes to nothing
private SecurityChanges _changes = SecurityChanges.None;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2018, 05, 01);
SetEndDate(2018, 06, 01);
SetCash(25000);
// this add universe method accepts two parameters:
// - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
// - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
AddUniverse(CoarseSelectionFunction, FineSelectionFunction);
foreach (Security stock in Securities.Values)
{
Debug("SECURITY = " + stock.Symbol);
}
}
// sort the data by daily dollar volume and take the top 'NumberOfSymbolsCoarse'
public IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
{
// Has Fundamentals, Min/Max Price filters
var filteredSorted = coarse
.Where(x => x.HasFundamentalData
&& (_minVolume < 0 || x.Volume >= _minVolume)
&& (_minPrice < 0 || x.Price >= _minPrice)
&& (_maxPrice < 0 || x.Price <= _maxPrice))
.OrderByDescending(x => x.DollarVolume);
// take the top entries from our sorted collection
var filtered = filteredSorted.Take(_numberOfSymbolsCoarse);
//Debug("COURSE COUNT = " + filtered.Count());
// we need to return only the symbol objects
return filtered.Select(x => x.Symbol);
}
// sort the data by P/E ratio and take the top 'NumberOfSymbolsFine'
public IEnumerable<Symbol> FineSelectionFunction(IEnumerable<FineFundamental> fine)
{
//Price/Book filter
var filtered = fine.Where(e => (_maxPbRatio < 0 || ( e.ValuationRatios.PBRatio <= _maxPbRatio && e.ValuationRatios.PBRatio > 0m)));
if(_maxPeRatio >= 0){
//PE filter
filtered = filtered.Where(e => e.ValuationRatios.PERatio <= _maxPeRatio);
}
if(_yieldGrowthMinPct >= 0){
//EPS Growth - proj this yr vs last yr
//Forward > Yield && (Forward / Yield -1 > .33) _yieldGrowthMinPct
filtered = filtered.Where(e => e.ValuationRatios.ForwardEarningYield > 0 && e.ValuationRatios.EarningYield > 0);
//&& (( e.ValuationRatios.ForwardEarningYield / e.ValuationRatios.EarningYield) -1) >= _yieldGrowthMinPct);
filtered = filtered.Where(e => (( e.ValuationRatios.ForwardEarningYield / e.ValuationRatios.EarningYield) -1) >= _yieldGrowthMinPct);
}
//Price Performance 52 weeks – 35.14 and above ()
//% Price off 50 day SMA : -1% and below ()
// sort descending by P/E ratio
if(_sortType == "PE" && _sortDir == "ASC"){
filtered = filtered.OrderBy(x => x.ValuationRatios.PERatio);
}else if (_sortType == "PE" && _sortDir == "DESC"){
filtered = filtered.OrderByDescending(x => x.ValuationRatios.PERatio);
}else if (_sortType == "PB" && _sortDir == "ASC"){
filtered = filtered.OrderBy(x => x.ValuationRatios.PBRatio);
}else if(_sortType == "PB" && _sortDir == "DESC"){
filtered = filtered.OrderByDescending(x => x.ValuationRatios.PBRatio);
}
// take the top entries from our sorted collection
filtered = filtered.Take(_numberOfSymbolsFine);
Debug("FINE COUNT = " + filtered.Count());
// we need to return only the symbol objects
return filtered.Select(x => x.Symbol);
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
public void OnData(TradeBars data)
{
/*
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
Debug("Liquidated Stock: " + security.Symbol.Value);
}
}
// we want 50% allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, _investmentAmt); //0.5m);
Debug("Purchased Stock: " + security.Symbol.Value);
}
_changes = SecurityChanges.None;
*/
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
if (changes.AddedSecurities.Count > 0)
{
Debug("Securities added: " + string.Join(",", changes.AddedSecurities.Select(x => x.Symbol.Value)));
}
if (changes.RemovedSecurities.Count > 0)
{
Debug("Securities removed: " + string.Join(",", changes.RemovedSecurities.Select(x => x.Symbol.Value)));
}
}
}
}