| Overall Statistics |
|
Total Trades 40 Average Win 4.82% Average Loss -2.91% Compounding Annual Return 6.599% Drawdown 12.200% Expectancy 0.593 Net Profit 37.668% Sharpe Ratio 0.683 Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.65 Alpha 0.156 Beta -4.35 Annual Standard Deviation 0.101 Annual Variance 0.01 Information Ratio 0.485 Tracking Error 0.101 Treynor Ratio -0.016 Total Fees $191.99 |
from datetime import datetime
### <summary>
### Simple indicator demonstration algorithm of MACD
### </summary>
### <meta name="tag" content="indicators" />
### <meta name="tag" content="indicator classes" />
### <meta name="tag" content="plotting indicators" />
class MACDTrendAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2010, 1, 1) #Set Start Date
self.SetEndDate(2015, 1, 1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Daily)
# define our daily macd(12,26) with a 9 day signal
self.__macd = self.MACD("SPY", 12, 26, 9, MovingAverageType.Exponential, Resolution.Daily)
self.__previous = datetime.min
self.PlotIndicator("MACD", True, self.__macd, self.__macd.Signal)
self.PlotIndicator("SPY", self.__macd.Fast, self.__macd.Slow)
overlayPlot = Chart("Overlay Plot")
overlayPlot.AddSeries(Series("SPY", SeriesType.Line, 0))
overlayPlot.AddSeries(Series("Buy", SeriesType.Scatter, 0))
overlayPlot.AddSeries(Series("Sell", SeriesType.Scatter, 0))
overlayPlot.AddSeries(Series("MACD", SeriesType.Line, 1))
overlayPlot.AddSeries(Series("MACD_Signal", SeriesType.Line, 1))
self.AddChart(overlayPlot)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.'''
# wait for our macd to fully initialize
if not self.__macd.IsReady: return
# only once per day
if self.__previous.date() == self.Time.date(): return
# define a small tolerance on our checks to avoid bouncing
tolerance = 0.0025
holdings = self.Portfolio["SPY"].Quantity
signalDeltaPercent = (self.__macd.Current.Value - self.__macd.Signal.Current.Value)/self.__macd.Fast.Current.Value
buy_signal_triggered, sell_signal_triggered = False, False
# if our macd is greater than our signal, then let's go long
if holdings <= 0 and signalDeltaPercent > tolerance: # 0.01%
# longterm says buy as well
self.SetHoldings("SPY", 1.0)
buy_signal_triggered = True
# of our macd is less than our signal, then let's go short
elif holdings >= 0 and signalDeltaPercent < -tolerance:
self.Liquidate("SPY")
sell_signal_triggered = True
self.__previous = self.Time
if buy_signal_triggered:
self.Plot("Overlay Plot", "Buy", data["SPY"].Value)
elif sell_signal_triggered:
self.Plot("Overlay Plot", "Sell", data["SPY"].Value)
self.Plot("Overlay Plot", "SPY", data["SPY"].Value)
self.Plot("Overlay Plot", "MACD", self.__macd.Current.Value)
self.Plot("Overlay Plot", "MACD_Signal", self.__macd.Signal.Current.Value)