| Overall Statistics |
|
Total Trades 30 Average Win 0.29% Average Loss -0.80% Compounding Annual Return -64.088% Drawdown 5.900% Expectancy -0.456 Net Profit -5.368% Sharpe Ratio -4.404 Probabilistic Sharpe Ratio 0.038% Loss Rate 60% Win Rate 40% Profit-Loss Ratio 0.36 Alpha -0.719 Beta 0.133 Annual Standard Deviation 0.148 Annual Variance 0.022 Information Ratio -6.817 Tracking Error 0.168 Treynor Ratio -4.911 Total Fees $30.00 |
from datetime import timedelta
import numpy as np
import pandas as pd
class ModelA(AlphaModel):
def __init__(self, resolution, insightsTimeDelta ):
self.symbolDataBySymbol = {}
self.modelResolution = resolution
self.insightsTimeDelta = insightsTimeDelta
def OnSecuritiesChanged(self, algorithm, changes):
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = SymbolData(added.Symbol, algorithm, self.modelResolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
def Update(self, algorithm, data):
insights=[]
for symbol, symbolData in self.symbolDataBySymbol.items():
symbolData.getInsight(algorithm.Securities[symbol].Price) # Latest known price; we are at 12:00 and the last trade at 10.57
if symbolData.tradeSecurity:
insights.append(Insight(symbol, self.insightsTimeDelta, InsightType.Price, symbolData.InsightDirection, 0.0025,None, "ModelA",None))
algorithm.Log(f"{symbol}\tMOM\t[{symbolData.fmom}]\t{round(symbolData.mom.Current.Value,2)}\tKAMA\t[{symbolData.fkama}]\t{round(symbolData.kama.Current.Value,2)}\
\tPrice\t{symbolData.price}\tROC\t[{symbolData.froc}]\t{round(symbolData.roc.Current.Value,4)}\tEMA\t[{symbolData.fema}]\tEMA-13\t{round(symbolData.ema13.Current.Value,2)}\
\tEMA-63\t{round(symbolData.ema63.Current.Value,2)}\tEMA-150\t{round(symbolData.ema150.Current.Value,2)}\taction\t{symbolData.InsightDirection}")
return insights
class FrameworkAlgorithm(QCAlgorithm):
def Initialize(self):
tickers = ["MSFT","MRNA","MELI","FSLY"]
symbols = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers]
resolution = Resolution.Hour #10-11, etc Daily data is midnight to mifnight, 12AM EST
warmup = 28
insightsTimeDelta = timedelta(hours=1)
fallback_barrier = 1000
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(TimeSpan.FromMinutes(60)), self.hourlyHousekeeping)
self.SetStartDate(2020, 12, 12)
self.SetCash(10000)
self.SetBenchmark("SPY")
self.UniverseSettings.Resolution = resolution
self.SetWarmUp(timedelta(warmup))
self.SetUniverseSelection(ManualUniverseSelectionModel(symbols))
self.SetAlpha(ModelA(resolution,insightsTimeDelta))
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
#self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel(resolution,PortfolioBias.LongShort,1,63,resolution,0.02,MaximumSharpeRatioPortfolioOptimizer(0,1,0)))
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02)) # drop in profit from the max / done daily > redo hourly?
self.SetExecution(ImmediateExecutionModel())
def hourlyHousekeeping(self):
# Fail Safe - If our strategy is losing than acceptable (something is wrong)
# Strategy suddenly losing moiney or logic problem/bug we did't carch i testing
pnl= sum([self.Portfolio[symbol].NetProfit for symbol in self.Portfolio.Keys])
if self.LiveMode:
if pnl < -1000:
self.Log(f"Fallback event triggered, liqudating {self.Portfolio.UnrealizedProfit} {self.Portfolio.TotalProfit}")
self.Liquidate()
self.Quit()
dt=int(self.Time.hour)
if dt >9 and dt<18:
if (self.IsMarketOpen("SPY") and self.Portfolio.Invested):
self.Log("\n\nPortfolio")
summary = {}
invested = [ x.Symbol.Value for x in self.Portfolio.Values if x.Invested ]
for symbol in invested:
hold_val = round(self.Portfolio[symbol].HoldingsValue, 2)
abs_val = round(self.Portfolio[symbol].AbsoluteHoldingsValue, 2)
pnl = round(self.Portfolio[symbol].UnrealizedProfit, 2)
qty = self.Portfolio[symbol].Quantity
price = self.Portfolio[symbol].Price
summary[symbol]=[hold_val,abs_val,pnl,qty,price]
df=pd.DataFrame(summary)
df.index = ['hold_val', 'abs_val', 'pnl', 'qty','price']
df=df.T
hold_val_total= abs(df['hold_val']).sum()
df = df.assign(weight=abs(df['hold_val'])/hold_val_total)
self.Log(df)
self.Log("\n\n")
class SymbolData:
def __init__(self, symbol, algorithm, resolution):
self.symbol = symbol
self.price = 0.00
self.kama = algorithm.KAMA(symbol, 10,2,30, resolution)
self.kama_factor = 1.01 # tolerance level to avoid buy and immediate sell scenario
self.mom = algorithm.MOM(symbol, 14, resolution)
self.roc = algorithm.ROC(symbol, 9, resolution)
self.ema13 = algorithm.EMA(symbol, 13, resolution)
self.ema63 = algorithm.EMA(symbol, 63, resolution)
self.ema150 = algorithm.EMA(symbol, 150, resolution)
self.fkama = False
self.fmom = False
self.froc = False
self.fema = False
self.held = False # to ensure we only sell what we own
def getInsight(self, price):
self.price = price
self.fkama = self.price>self.kama.Current.Value*self.kama_factor
self.fmom = self.mom.Current.Value>0
self.froc = self.roc.Current.Value>0
self.fema = self.ema13.Current.Value>self.ema63.Current.Value>self.ema150.Current.Value
self.tradeSecurity = False # helps to avoid liquidating when InsightDirection.Flat
self.InsightDirection = InsightDirection.Flat # liqudates unless self.tradeSecurity flag is set to False
if self.fmom and self.fkama and self.fema and self.froc:
self.InsightDirection = InsightDirection.Up
self.tradeSecurity = True
self.held = True
if self.held and (not self.fmom or not self.fkama or not self.fema or not self.froc):
self.InsightDirection = InsightDirection.Flat # liqudates position - work around InsightDirection.Down which may sell and then short
self.held = False