Overall Statistics
Total Orders
6498
Average Win
0.26%
Average Loss
-0.18%
Compounding Annual Return
29.921%
Drawdown
20.500%
Expectancy
0.260
Start Equity
1000000
End Equity
4567006.29
Net Profit
356.701%
Sharpe Ratio
1.255
Sortino Ratio
1.478
Probabilistic Sharpe Ratio
81.510%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
1.39
Alpha
0.143
Beta
0.386
Annual Standard Deviation
0.148
Annual Variance
0.022
Information Ratio
0.46
Tracking Error
0.168
Treynor Ratio
0.48
Total Fees
$116266.71
Estimated Strategy Capacity
$0
Lowest Capacity Asset
DIS R735QTJ8XC9X
Portfolio Turnover
33.06%
# region imports
from AlgorithmImports import *
# endregion
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from QuantConnect.Indicators import *
# --- Add explicit import ---
from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget
# ---
from datetime import timedelta
import numpy as np
import pandas as pd

# Assuming KQTStrategy is correctly defined in strategy.py
from strategy import KQTStrategy

class KQTStrategyModule:
    def __init__(self, algorithm):
        self.algorithm = algorithm
        self.strategy = KQTStrategy()
        self.lookback = 60
        self.tickers = []
        self.symbols = {}
        self.sector_mappings = {}
        self.strategy.sector_mappings = self.sector_mappings # Share the dictionary

        # Add SPY for market data (used within KQT logic)
        self.spy = self.algorithm.AddEquity("SPY", Resolution.Daily).Symbol

        # Storage for historical data and predictions
        self.stock_data = {}
        self.current_predictions = {}
        self.previous_positions = {}
        self.previous_portfolio_value = 0

        # Track stopped out positions
        self.stopped_out = set()

    def Initialize(self):
        """Initialize specific settings for KQT mode"""
        self.algorithm.SetBenchmark("SPY") # KQT uses SPY benchmark
        # Universe selection is specific to KQT
        self._universe = self.algorithm.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        # Schedule the trading function
        self.trade_schedule = self.algorithm.Schedule.On(self.algorithm.DateRules.EveryDay(),
                                        self.algorithm.TimeRules.At(10, 0), # 10:00 AM Eastern
                                        self.TradeExecute)
        self.previous_portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue # Initialize for return calc

    def Activate(self):
        """Actions to take when this strategy becomes active."""
        self.algorithm.Log("Activating KQT Strategy Module")
        # Ensure universe is active
        if not self._universe:
             self._universe = self.algorithm.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        # Ensure schedule is active (QC schedule API doesn't have enable/disable, rely on flag in TradeExecute)
        self.previous_portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue # Reset portfolio value baseline

    def Deactivate(self):
        """Actions to take when this strategy becomes inactive."""
        self.algorithm.Log("Deactivating KQT Strategy Module")
        # Remove universe specific to KQT? Or keep symbols? Keep for now.
        # self.algorithm.RemoveUniverse(self._universe) # Be careful if symbols are shared
        # self._universe = None
        # Clear internal state if necessary
        self.current_predictions = {}
        self.previous_positions = {}
        self.stock_data = {}
        self.stopped_out.clear()

    def CoarseSelectionFunction(self, coarse):
        # Use algorithm time
        if self.algorithm.Time.hour == 9 and self.algorithm.Time.minute == 30: # Avoid excessive logging
             self.algorithm.Log(f"KQT Coarse Selection: {len(coarse)} symbols")
        sorted_by_dollar_volume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
        return [x.Symbol for x in sorted_by_dollar_volume[:500]]

    def FineSelectionFunction(self, fine):
        # Use algorithm time
        if self.algorithm.Time.hour == 9 and self.algorithm.Time.minute == 30: # Avoid excessive logging
            self.algorithm.Log(f"KQT Fine Selection: {len(fine)} symbols")
        sorted_by_market_cap = sorted(fine, key=lambda x: x.MarketCap, reverse=True)
        selected = sorted_by_market_cap[:100]

        current_symbols = set(self.symbols.keys())
        new_symbols = set()

        for f in selected:
            ticker = f.Symbol.Value
            new_symbols.add(ticker)
            if ticker not in self.symbols:
                 self.symbols[ticker] = f.Symbol # Store symbol object

            # Try multiple ways to get sector information
            sector = "Unknown"
            try:
                if hasattr(f, 'AssetClassification') and f.AssetClassification is not None:
                    if hasattr(f.AssetClassification, 'MorningstarSectorCode'): sector = str(f.AssetClassification.MorningstarSectorCode)
                    elif hasattr(f.AssetClassification, 'GicsSectorCode'): sector = str(f.AssetClassification.GicsSectorCode) # Common alternative
                    elif hasattr(f.AssetClassification, 'Sector'): sector = f.AssetClassification.Sector
                    elif hasattr(f.AssetClassification, 'Industry'): sector = f.AssetClassification.Industry # Fallback
            except Exception as e:
                self.algorithm.Debug(f"Error getting sector for {ticker}: {str(e)}")
            self.sector_mappings[ticker] = sector

        # Update tickers list based on fine selection
        self.tickers = [ticker for ticker in self.tickers if ticker in new_symbols]
        for ticker in new_symbols:
            if ticker not in self.tickers:
                self.tickers.append(ticker)

        # Clean up symbols/mappings for removed tickers from fine selection
        removed_symbols = current_symbols - new_symbols
        for ticker in removed_symbols:
            if ticker in self.symbols: del self.symbols[ticker]
            if ticker in self.sector_mappings: del self.sector_mappings[ticker]
            if ticker in self.stock_data: del self.stock_data[ticker]
            if ticker in self.tickers: self.tickers.remove(ticker)


        return [self.symbols[ticker] for ticker in self.tickers]


    def OnSecuritiesChanged(self, changes):
        # This might be redundant if FineSelectionFunction handles updates,
        # but good for explicitly handling removals reported by QC.
        self.algorithm.Log(f"KQT OnSecuritiesChanged: Added {len(changes.AddedSecurities)}, Removed {len(changes.RemovedSecurities)}")
        # Additions are handled by FineSelection
        for removed in changes.RemovedSecurities:
            ticker = removed.Symbol.Value
            if ticker in self.tickers: self.tickers.remove(ticker)
            if ticker in self.symbols: del self.symbols[ticker]
            if ticker in self.sector_mappings: del self.sector_mappings[ticker]
            if ticker in self.stock_data: del self.stock_data[ticker]
            # Liquidate position if removed from universe
            if self.algorithm.Portfolio[removed.Symbol].Invested:
                self.algorithm.Log(f"Liquidating {ticker} due to removal from KQT universe.")
                self.algorithm.Liquidate(removed.Symbol)

    def OnData(self, data):
        """Handle daily data updates if necessary (primary logic is in TradeExecute)."""
        pass

    def TradeExecute(self):
        """Execute trading logic daily before market close"""
        # Check if this strategy is active in the main algorithm
        if not self.algorithm.is_kqt_active:
            # self.algorithm.Debug("KQT TradeExecute skipped: Not active.") # Keep this commented unless debugging activation issues
            return

        # Market Open Check
        if not self.algorithm.Securities.ContainsKey(self.spy) or not self.algorithm.Securities[self.spy].Exchange.ExchangeOpen:
            # self.algorithm.Debug(f"KQT Skipping TradeExecute: Market closed or SPY not ready. Time: {self.algorithm.Time}") # Keep this commented unless debugging market open issues
            return

        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT TradeExecute STARTING on {self.algorithm.Time}. Active: {self.algorithm.is_kqt_active}. Universe size: {len(self.tickers)}")

        # 1. Update historical data
        self.UpdateHistoricalData()
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Updated historical data. {len(self.stock_data)} stocks with data.")

        # 2. Generate predictions (now always uses fallback)
        self.current_predictions = self.GeneratePredictions()
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Generated {len(self.current_predictions)} predictions: {self.current_predictions}") # Log generated predictions

        # 3. Check for stop losses
        self.ProcessStopLosses()
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Processed stop losses. Stopped out: {self.stopped_out}")

        # 4. Generate new position sizes
        market_returns = self.GetMarketReturns()
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Market returns for position gen: {market_returns}") # Log market returns input
        target_positions = self.strategy.generate_positions(self.current_predictions, market_returns, algorithm=self.algorithm) # Pass self.algorithm for logging
        # --- Logging moved inside generate_positions ---
        # self.algorithm.Log(f"KQT Target positions from strategy: {target_positions}")

        # 5. Execute trades
        self.ExecuteTrades(target_positions)
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Executed trades.")

        # 6. Update portfolio return for regime detection
        daily_return = self.CalculatePortfolioReturn()
        self.strategy.update_portfolio_returns(daily_return)
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT Updated portfolio returns. Daily return: {daily_return:.4f}")

        # 7. Store today's value for tomorrow's calculation
        self.previous_portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue
        # --- ADDED LOG ---
        self.algorithm.Log(f"--> KQT TradeExecute FINISHED on {self.algorithm.Time}.")

    def CalculatePortfolioReturn(self):
        """Calculate today's portfolio return"""
        current_value = self.algorithm.Portfolio.TotalPortfolioValue
        if self.previous_portfolio_value > 0:
            daily_return = (current_value / self.previous_portfolio_value - 1) * 100
        else:
            daily_return = 0
        return daily_return

    def UpdateHistoricalData(self):
        """Fetch and update historical data for all symbols"""
        active_tickers = list(self.symbols.keys()) # Use currently selected symbols
        if not active_tickers:
            self.algorithm.Log("KQT UpdateHistoricalData: No active tickers.")
            self.stock_data = {}
            return

        symbols_to_request = [self.symbols[ticker] for ticker in active_tickers]
        history = self.algorithm.History(symbols_to_request, self.lookback + 5, Resolution.Daily) # Get slightly more for indicators
        if history.empty:
            self.algorithm.Log("KQT UpdateHistoricalData: History request returned empty.")
            self.stock_data = {}
            return

        history = history.reset_index() # This creates 'time' and 'symbol' columns
        for ticker in active_tickers:
            symbol_obj = self.symbols[ticker]
            # Filter history for the specific symbol
            symbol_history = history[history['symbol'] == symbol_obj]

            if symbol_history.empty or len(symbol_history) < self.lookback:
                if ticker in self.stock_data: del self.stock_data[ticker] # Remove old data if insufficient now
                continue

            self.stock_data[ticker] = symbol_history

    def GetMarketReturns(self):
        """Get recent market returns for regime detection"""
        spy_history = self.algorithm.History(self.spy, 15, Resolution.Daily) # Need ~10 returns
        if spy_history.empty or len(spy_history) < 2:
            return []

        spy_prices = spy_history.loc[self.spy]['close'] if self.spy in spy_history.index else pd.Series()
        if len(spy_prices) < 2: return []

        spy_returns = spy_prices.pct_change().dropna() * 100
        return spy_returns.tolist()[-10:] # Return last 10 days

    def GeneratePredictions(self):
        """Generate predictions for all stocks using ONLY the momentum fallback logic."""
        predictions = {}
        # Use Debug for potentially verbose logs
        self.algorithm.Debug(f"KQT Generating fallback predictions for {len(self.stock_data)} stocks.")

        for ticker, history_df in self.stock_data.items():
            if ticker not in self.symbols: continue # Ensure symbol exists

            try:
                if history_df.empty or len(history_df) < 20: # Need at least 20 for fallback MA
                    self.algorithm.Debug(f"KQT Skipping {ticker}: Not enough history ({len(history_df)}) for fallback.")
                    continue

                # --- Fallback Momentum Logic ---
                closes = history_df['close'].values

                if len(closes) > 20:
                    short_ma = np.mean(closes[-5:])
                    long_ma = np.mean(closes[-20:])
                    momentum = closes[-1] / closes[-10] - 1 if len(closes) > 10 else 0

                    pred_score = momentum + 0.5 * (short_ma/long_ma - 1) if long_ma != 0 else momentum
                    pred_return = pred_score * 2 # Keep scaling from original fallback

                    # Store the prediction
                    threshold = 0.1 # Example: Use a fixed threshold for fallback scores
                    predictions[ticker] = {
                        "pred_return": pred_return,
                        "composite_score": pred_return / threshold if threshold != 0 else pred_return
                    }
                else:
                    self.algorithm.Debug(f"KQT Fallback skipped for {ticker}: Not enough close prices ({len(closes)}).")
                    continue
                # --- End Fallback Logic ---

            except Exception as e:
                self.algorithm.Log(f"KQT Error processing {ticker} in GeneratePredictions: {str(e)}")
                import traceback
                self.algorithm.Log(traceback.format_exc())
                continue

        return predictions

    def ProcessStopLosses(self):
        """Check and process stop loss orders"""
        stop_loss_level = self.strategy.get_stop_loss_level()
        self.stopped_out.clear() # Reset daily

        for ticker in list(self.symbols.keys()): # Iterate over current universe
            symbol = self.symbols[ticker]
            if not self.algorithm.Portfolio[symbol].Invested:
                continue

            position = self.algorithm.Portfolio[symbol]

            # Use history to get daily return
            history = self.algorithm.History(symbol, 2, Resolution.Daily)
            if history.empty or len(history) < 2: continue

            close_prices = history.loc[symbol]['close'] if symbol in history.index else pd.Series()
            if len(close_prices) < 2: continue

            daily_return = (close_prices.iloc[-1] / close_prices.iloc[-2] - 1) * 100

            position_type = "long" if position.Quantity > 0 else "short"
            hit_stop = False

            if position_type == "long" and daily_return < stop_loss_level:
                hit_stop = True
                self.algorithm.Log(f"KQT Stop loss triggered for {ticker} (long): {daily_return:.2f}% < {stop_loss_level:.2f}%")
            elif position_type == "short" and daily_return > abs(stop_loss_level): # Stop loss for shorts is positive return
                hit_stop = True
                self.algorithm.Log(f"KQT Stop loss triggered for {ticker} (short): {daily_return:.2f}% > {abs(stop_loss_level):.2f}%")

            if hit_stop:
                self.stopped_out.add(ticker)
                self.algorithm.Liquidate(symbol, f"KQT Stop Loss {daily_return:.2f}%")


    def ExecuteTrades(self, target_positions):
        """Execute trades to reach target positions using CalculateOrderQuantity and MarketOrder"""
        self.algorithm.Log(f"--- KQT ExecuteTrades START ---") # Mark start clearly
        portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue

        # --- Implement Liquidation Logic for Empty Targets ---
        if not target_positions:
            self.algorithm.Log("KQT: No target positions received. Liquidating existing KQT assets.")
            liquidated_count = 0
            # Iterate through symbols managed by KQT
            for ticker, symbol in self.symbols.items():
                if self.algorithm.Portfolio[symbol].Invested:
                    if ticker not in self.stopped_out:
                        self.algorithm.Log(f"KQT: Liquidating {ticker} ({symbol.ID}) due to empty target list.")
                        # --- Use Liquidate ---
                        self.algorithm.Liquidate(symbol, "KQT Empty Target")
                        liquidated_count += 1
                    else:
                        self.algorithm.Log(f"KQT: Skipping liquidation for {ticker} (empty target, but stopped out).")
            self.algorithm.Log(f"KQT: Liquidated {liquidated_count} assets due to empty target list.")
            self.algorithm.Log(f"--- KQT ExecuteTrades END (No Targets) ---")
            return
        # --- End Liquidation Logic ---


        self.algorithm.Log(f"KQT Received {len(target_positions)} target positions: {target_positions}")
        if portfolio_value <= 0:
            self.algorithm.Log("KQT ExecuteTrades: Zero or negative portfolio value.")
            self.algorithm.Log(f"--- KQT ExecuteTrades END (Zero Value) ---")
            return

        # Log portfolio state BEFORE execution
        holdings_before = {kvp.Key.Value: kvp.Value.Quantity for kvp in self.algorithm.Portfolio if kvp.Value.Invested}
        self.algorithm.Log(f"Portfolio holdings BEFORE KQT execution: {holdings_before}")


        # Scale positions
        total_allocation = sum(abs(weight) for weight in target_positions.values())
        # --- Adjust Max Allocation Cap ---
        max_allowed_allocation = 0.8 # Increased from 0.7, matching original KQT cap
        # ---
        if total_allocation > max_allowed_allocation:
            scaling_factor = max_allowed_allocation / total_allocation
            self.algorithm.Log(f"KQT: Scaling positions by {scaling_factor:.3f} to meet max allocation {max_allowed_allocation*100}%. Original total: {total_allocation:.3f}")
            scaled_targets = {ticker: weight * scaling_factor for ticker, weight in target_positions.items()}
        else:
            scaled_targets = target_positions.copy() # Use a copy

        self.algorithm.Log(f"KQT Scaled target weights: {scaled_targets}")

        processed_symbols = set()

        # --- Use CalculateOrderQuantity and MarketOrder ---
        # Execute trades for target positions
        for ticker, target_weight in scaled_targets.items():
            if ticker in self.stopped_out:
                self.algorithm.Log(f"KQT: Skipping trade for {ticker}, recently stopped out.")
                continue
            if ticker not in self.symbols:
                self.algorithm.Log(f"KQT: Skipping trade for {ticker}, not in current universe symbols map.")
                continue

            symbol = self.symbols[ticker]
            processed_symbols.add(symbol) # Track symbols targeted by KQT

            try:
                target_weight_float = float(target_weight)
            except Exception as cast_e:
                self.algorithm.Error(f"Could not cast target_weight '{target_weight}' to float for {ticker}: {cast_e}")
                continue

            if not np.isfinite(target_weight_float):
                self.algorithm.Error(f"Invalid target weight for {ticker}: {target_weight_float}. Skipping.")
                continue

            # --- Minimum weight check ---
            min_abs_weight = 0.0001
            if abs(target_weight_float) < min_abs_weight:
                self.algorithm.Log(f"Target weight for {ticker} ({target_weight_float:.6f}) is below minimum {min_abs_weight}.")
                # If weight is near zero, ensure position is closed if currently held
                if self.algorithm.Portfolio[symbol].Invested:
                     self.algorithm.Log(f"  Liquidating {ticker} due to near-zero target weight.")
                     # --- Use Liquidate ---
                     self.algorithm.Liquidate(symbol, "KQT Near-Zero Target")
                continue
            # ---

            # Calculate the order quantity
            quantity = self.algorithm.CalculateOrderQuantity(symbol, target_weight_float)
            self.algorithm.Log(f"Calculated quantity for {ticker} (Target: {target_weight_float:.4f}): {quantity}")

            if quantity != 0:
                # Place the market order
                self.algorithm.Log(f"Placing MarketOrder for {ticker}, Quantity: {quantity}")
                try:
                    order_ticket = self.algorithm.MarketOrder(symbol, quantity)
                    if order_ticket.Status == OrderStatus.Invalid:
                         self.algorithm.Error(f"MarketOrder failed for {ticker}, Quantity: {quantity}. Reason: {order_ticket.GetErrorMessage()}")
                    else:
                         self.algorithm.Log(f"  Order submitted for {ticker}: ID {order_ticket.OrderId}, Status {order_ticket.Status}")
                except Exception as order_e:
                    self.algorithm.Error(f"Exception placing MarketOrder for {ticker}, Quantity: {quantity}: {order_e}")
            else:
                # If quantity is 0, but we hold the asset, liquidate it (target weight is non-zero but rounds to 0 shares)
                if self.algorithm.Portfolio[symbol].Invested:
                    self.algorithm.Log(f"Calculated quantity is 0 for {ticker}, but position is held. Liquidating.")
                    # --- Use Liquidate ---
                    self.algorithm.Liquidate(symbol, "KQT Zero Quantity Target")
                # else: # Optional log if quantity is 0 and not held
                #    self.algorithm.Log(f"Calculated quantity is 0 for {ticker}, no position held.")


        # Liquidate KQT-managed positions no longer in target (and not stopped out)
        self.algorithm.Log(f"Checking for KQT assets to liquidate (not in scaled targets: {list(scaled_targets.keys())})")
        for kqt_ticker, kqt_symbol in self.symbols.items():
            # Check if the symbol was processed OR if it's invested but shouldn't be
            if kqt_symbol not in processed_symbols and self.algorithm.Portfolio[kqt_symbol].Invested:
                 # This KQT asset is held but wasn't in the target_positions
                 if kqt_ticker not in self.stopped_out:
                     self.algorithm.Log(f"KQT: Liquidating {kqt_ticker} ({kqt_symbol.ID}) as it's no longer targeted by KQT.")
                     # --- Use Liquidate ---
                     self.algorithm.Liquidate(kqt_symbol, "KQT No Longer Targeted")
                 else:
                     self.algorithm.Log(f"KQT: {kqt_ticker} not targeted, but skipping liquidation (recently stopped out).")


        # Log portfolio state AFTER execution
        holdings_after = {kvp.Key.Value: kvp.Value.Quantity for kvp in self.algorithm.Portfolio if kvp.Value.Invested}
        self.algorithm.Log(f"Portfolio holdings AFTER KQT execution: {holdings_after}")

        self.algorithm.Log(f"--- KQT ExecuteTrades END ---")
# region imports
from AlgorithmImports import *
# endregion
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from QuantConnect.Indicators import *
from datetime import timedelta
import numpy as np
import pandas as pd
from sklearn.preprocessing import RobustScaler


class KQTStrategy:
    def __init__(self):
        self.lookback = 30
        self.scalers = {}
        self.feature_cols = []
        self.stock_to_id = {}
        self.sector_mappings = {}

        self.adaptive_threshold = 0.1
        self.pred_std = 1.0
        self.current_regime = "neutral"
        self.portfolio_returns = []
        self.defensive_mode = False
        self.previous_day_hit_stops = []
        self.algorithm = None

    def calculate_portfolio_risk_score(self, market_returns):
        """Calculate a portfolio risk score (0-100) to scale overall exposure"""
        risk_score = 50  # Neutral starting point
        
        # VIX-like volatility measurement using SPY returns
        if len(market_returns) >= 5:
            recent_vol = np.std(market_returns[-5:]) * np.sqrt(252)  # Annualized
            longer_vol = np.std(market_returns[-10:]) * np.sqrt(252) if len(market_returns) >= 10 else recent_vol
            
            # Volatility spike detection
            vol_ratio = recent_vol / longer_vol if longer_vol > 0 else 1
            if vol_ratio > 1.5:  # Sharp volatility increase
                risk_score -= 30
            elif vol_ratio > 1.2:
                risk_score -= 15
                
        # Consecutive negative days
        if len(market_returns) >= 3:
            neg_days = sum(1 for r in market_returns[-3:] if r < 0)
            if neg_days == 3:  # Three consecutive down days
                risk_score -= 20
            elif neg_days == 2:
                risk_score -= 10
                
        # Trend direction
        if len(market_returns) >= 10:
            avg_recent = np.mean(market_returns[-5:])
            avg_older = np.mean(market_returns[-10:-5])
            trend_change = avg_recent - avg_older
            
            # Declining trend
            if trend_change < -0.3:
                risk_score -= 15
            # Accelerating uptrend
            elif trend_change > 0.3 and avg_recent > 0:
                risk_score += 10
                
        return max(10, min(100, risk_score))  # Constrain between 10-100

    def detect_market_regime(self, daily_returns, lookback=10):
        """Detect current market regime based on portfolio returns"""
        if len(daily_returns) >= 1:
            market_return = np.mean(daily_returns)
            market_vol = np.std(daily_returns)
            
            if len(self.portfolio_returns) >= 3:
                recent_returns = self.portfolio_returns[-min(lookback, len(self.portfolio_returns)):]
                avg_recent_return = np.mean(recent_returns)
                
                if len(self.portfolio_returns) >= 5:
                    very_recent = np.mean(self.portfolio_returns[-3:])
                    less_recent = np.mean(self.portfolio_returns[-min(8, len(self.portfolio_returns)):-3])
                    trend_change = very_recent - less_recent
                    
                    if trend_change > 0.5 and avg_recent_return > 0.2:
                        return "breakout_bullish"
                    elif trend_change < -0.5 and avg_recent_return < -0.2:
                        return "breakdown_bearish"
                
                if avg_recent_return > 0.15:
                    if market_return > 0:
                        return "bullish_strong"
                    else:
                        return "bullish_pullback"
                elif avg_recent_return < -0.3:
                    if market_return < -0.2:
                        return "bearish_high_vol"
                    else:
                        return "bearish_low_vol"
                elif avg_recent_return > 0 and market_return > 0:
                    return "bullish"
                elif avg_recent_return < 0 and market_return < 0:
                    return "bearish"
            
            if market_return > -0.05:
                return "neutral"
            else:
                return "bearish"
        
        return "neutral"
        
    def detect_bearish_signals(self, recent_returns):
        """Detect early warning signs of bearish conditions"""
        bearish_signals = 0
        signal_strength = 0
        
        if len(self.portfolio_returns) >= 5:
            recent_portfolio_returns = self.portfolio_returns[-5:]
            pos_days = sum(1 for r in recent_portfolio_returns if r > 0)
            neg_days = sum(1 for r in recent_portfolio_returns if r < 0)
            
            if neg_days > pos_days:
                bearish_signals += 1
                signal_strength += 0.2 * (neg_days - pos_days)
        
        if len(self.portfolio_returns) >= 10:
            recent_vol = np.std(self.portfolio_returns[-5:])
            older_vol = np.std(self.portfolio_returns[-10:-5])
            if recent_vol > older_vol * 1.3:  # 30% volatility increase
                bearish_signals += 1
                signal_strength += 0.3 * (recent_vol/older_vol - 1)
        
        
        if len(self.portfolio_returns) >= 5:
            if self.portfolio_returns[-1] < 0 and self.portfolio_returns[-2] > 0.3:
                bearish_signals += 1
                signal_strength += 0.3
        
        return bearish_signals, signal_strength
            


    def generate_positions(self, prediction_data, current_returns=None, algorithm=None): # Add algorithm parameter
        """Generate position sizing based on predictions with improved diversification"""
        # Store algorithm instance for logging
        if algorithm:
            self.algorithm = algorithm
        else:
            # Fallback if algorithm instance isn't passed (should not happen from module)
            print("Warning: Algorithm instance not provided to generate_positions for logging.")
            log_func = print
        log_func = self.algorithm.Log if self.algorithm else print # Use Log for important info

        # --- Logging Start ---
        log_func(f"--- generate_positions ---")
        log_func(f"Input predictions count: {len(prediction_data)}") # Log count instead of full dict initially
        # self.algorithm.Debug(f"Input predictions data: {prediction_data}") # Use Debug for potentially large dict
        log_func(f"Input market returns: {current_returns}")
        # --- Logging End ---

        if not prediction_data:
            log_func("generate_positions: No prediction data provided.")
            return {}

        # Update market regime
        if current_returns is not None and len(current_returns) > 0:
            self.current_regime = self.detect_market_regime(current_returns)
            bearish_count, bearish_strength = self.detect_bearish_signals(current_returns)
            self.defensive_mode = bearish_count >= 2 or bearish_strength > 0.5
        else:
            # Default if no returns provided
            self.current_regime = "neutral"
            self.defensive_mode = False

        # --- Define Bullish Regimes and Tech Sector ---
        bullish_regimes = {"bullish_strong", "breakout_bullish", "bullish", "bullish_pullback"}
        is_bullish = self.current_regime in bullish_regimes
        # !!! IMPORTANT: Verify this identifier matches your actual sector data (e.g., GICS code '45') !!!
        TECH_SECTOR_IDENTIFIER = '45'
        tech_boost_factor = 1.15 # Apply a 15% boost in bullish regimes
        # ---

        # Calculate portfolio risk score (0-100)
        portfolio_risk_score = self.calculate_portfolio_risk_score(current_returns if current_returns else [])
        # Convert to a scaling factor (0.1 to 1.0)
        risk_scaling = portfolio_risk_score / 100
        # --- INCREASE MIN RISK SCALING FLOOR ---
        min_risk_scaling = 0.75 # Increased from 0.4 to 0.75 (ensures at least 75% of potential allocation is used)
        # ---
        risk_scaling = max(min_risk_scaling, risk_scaling)
        # ---

        # --- Logging ---
        log_func(f"Regime: {self.current_regime}, Defensive Mode: {self.defensive_mode}")
        log_func(f"Portfolio Risk Score: {portfolio_risk_score}, Risk Scaling (min {min_risk_scaling}): {risk_scaling:.2f}")
        # --- Logging End ---

        # Adjust threshold based on regime (using the fixed default threshold now)
        base_threshold = self.adaptive_threshold # Use the fixed threshold from __init__
        current_threshold = base_threshold # Keep it simple for now, regime adjustment might need tuning for fallback scores
        # --- Logging ---
        log_func(f"Using Threshold: {current_threshold}")
        # --- Logging End ---

        positions = {}

        # Group stocks by sector
        sector_data = {}
        valid_predictions = 0
        for ticker, data in prediction_data.items():
            # Ensure data has the expected keys
            if "pred_return" not in data:
                log_func(f"Warning: Missing 'pred_return' for {ticker}")
                continue
            pred_return = data["pred_return"]
            sector = self.sector_mappings.get(ticker, "Unknown")

            # --- Apply Tech Boost in Bullish Regime ---
            boost_applied = False
            if is_bullish and sector == TECH_SECTOR_IDENTIFIER:
                original_pred = pred_return
                pred_return *= tech_boost_factor
                boost_applied = True
                # Optional Debug Log:
                # self.algorithm.Debug(f"Applied {tech_boost_factor}x boost to {ticker} (Tech) in {self.current_regime} regime. Original: {original_pred:.4f}, Boosted: {pred_return:.4f}")
            # ---

            if sector not in sector_data:
                sector_data[sector] = []

            sector_data[sector].append({
                "ticker": ticker,
                "pred_return": pred_return, # Use potentially boosted value
                # Use the current_threshold for composite score
                "composite_score": pred_return / current_threshold if current_threshold != 0 else pred_return
            })
            valid_predictions += 1

        # --- ADDED LOG ---
        log_func(f"Found {valid_predictions} valid predictions.")
        # ---

        if valid_predictions == 0:
            log_func("generate_positions: No valid predictions after filtering.")
            return {}

        # Rank sectors by average predicted return
        sector_avg_scores = {}
        for sector, stocks in sector_data.items():
            if stocks: # Ensure sector has stocks
                 sector_avg_scores[sector] = np.mean([s["pred_return"] for s in stocks])
            else:
                 sector_avg_scores[sector] = -np.inf # Penalize empty sectors

        ranked_sectors = sorted(sector_avg_scores.keys(), key=lambda x: sector_avg_scores[x], reverse=True)
        # --- Reduce Sector Count ---
        top_sector_count = 4 if portfolio_risk_score > 60 else 3 # Reduced from 5/4
        # ---
        top_sectors = ranked_sectors[:min(top_sector_count, len(ranked_sectors))]

        # --- Logging ---
        log_func(f"Ranked Sectors: {ranked_sectors}")
        log_func(f"Top Sectors Selected ({top_sector_count}): {top_sectors}")
        # --- Logging End ---

        # --- Reduce Stocks Per Sector ---
        stocks_per_sector = 3 if self.current_regime in ["bullish_strong", "breakout_bullish"] else 2 # Reduced from 4/3
        # ---

        # Allocate within top sectors
        selected_stocks_for_positioning = []
        for sector in top_sectors:
            if sector not in sector_data: continue # Skip if sector somehow has no data
            sector_stocks = sorted(sector_data[sector], key=lambda x: x["pred_return"], reverse=True)
            top_stocks_in_sector = sector_stocks[:min(stocks_per_sector, len(sector_stocks))]
            selected_stocks_for_positioning.extend(top_stocks_in_sector)
            # --- Logging ---
            log_func(f"Sector '{sector}': Top stocks {[s['ticker'] for s in top_stocks_in_sector]} with scores {[f'{s:.3f}' for s in [st['pred_return'] for st in top_stocks_in_sector]]}")
            # --- Logging End ---

        # --- Log count before filtering ---
        log_func(f"Selected {len(selected_stocks_for_positioning)} stocks across top sectors before size filtering.")
        # ---

        # Calculate position sizes for selected stocks
        log_func(f"Calculating positions for selected stocks.") # Log count
        for stock in selected_stocks_for_positioning:
            ticker = stock["ticker"]
            # Use pred_return directly for signal strength with fallback scores
            signal_strength = stock["pred_return"]

            # --- Adjust Base Size Calculation & Filter (Less Aggressive) ---
            # Decreased multiplier
            # Kept max base size high (0.6) - allows concentration if signal is strong
            # Increased filter threshold
            base_size_multiplier = 1.2 # Decreased from 1.5 to 1.2
            max_base_size = 0.5 # Decreased from 0.6 to 0.5
            min_base_size_threshold = 0.02 # Increased from 0.05 to 0.06

            base_size = min(max_base_size, max(0.01, base_size_multiplier * signal_strength))

            # --- Hysteresis Check (Optional) ---
            # entry_threshold_multiplier = 1.1 # Require 10% higher base size to enter than to stay
            # previously_held = ticker in self.algorithm.kqt_previous_positions and self.algorithm.kqt_previous_positions[ticker] > 0
            # required_threshold = min_base_size_threshold if previously_held else min_base_size_threshold * entry_threshold_multiplier
            # if base_size > required_threshold:
            # --- Original Check (No Hysteresis) ---
            if base_size > min_base_size_threshold: # Use the increased threshold
            # ---
                final_size = base_size * risk_scaling
                # --- Increase minimum final size threshold ---
                min_final_size = 0.015 # Increased from 0.04 to 0.055 (5.5%)
                if final_size >= min_final_size:
                    positions[ticker] = final_size
                    # --- Logging ---
                    self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size: {base_size:.3f}, Final Size: {final_size:.3f}")
                    # --- Logging End ---
                else:
                    self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size: {base_size:.3f}, Final Size ({final_size:.3f}) too small after risk scaling (Min: {min_final_size}), skipping.")
            else:
                 self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size ({base_size:.3f}) too small or negative (Threshold: {min_base_size_threshold}), skipping.")


        # Defensive adjustments
        if self.defensive_mode or self.current_regime in ["bearish_high_vol", "bearish_low_vol", "breakdown_bearish"]:
            # --- Soften Defensive Scaling ---
            scaling_factor = 0.9 if self.defensive_mode else 0.99 # Increased from 0.7/0.85
            # ---
            log_func(f"Defensive Adjustment: Scaling positions by {scaling_factor}")
            for ticker in list(positions.keys()): # Iterate over keys copy
                positions[ticker] *= scaling_factor
                # Use the increased min_final_size as the post-scaling check too
                # --- Use the SAME min_final_size threshold after scaling ---
                if positions[ticker] < min_final_size: # Check against the 4% threshold again
                    log_func(f"  Removing {ticker} due to small size ({positions[ticker]:.4f}) after defensive scaling (Min: {min_final_size}).")
                    del positions[ticker]

            # --- Temporarily Disable Hedges ---
            # Add hedges (shorts) based on negative predictions
            # if portfolio_risk_score < 40:
            #     negative_preds = {t: data["pred_return"] for t, data in prediction_data.items()
            #                     if "pred_return" in data and data["pred_return"] < -0.05 and t not in positions} # Threshold for shorting
            #
            #     if negative_preds:
            #         worst_stocks = sorted(negative_preds.items(), key=lambda x: x[1])[:2]
            #         log_func(f"Defensive Adjustment: Adding Hedges for {worst_stocks}")
            #         for ticker, pred in worst_stocks:
            #             hedge_size = -0.15 if self.defensive_mode else -0.1
            #             positions[ticker] = hedge_size
            #             log_func(f"  Adding hedge {ticker} with size {hedge_size}")
            # ---

        # --- Logging Final ---
        log_func(f"Final positions generated ({len(positions)}): {positions}")
        log_func(f"--- generate_positions END ---")
        # --- Logging End ---
        return positions



    def get_stop_loss_level(self):
        """Get appropriate stop-loss level based on market regime"""
        if self.current_regime in ["bullish_strong", "breakout_bullish"]:
            if self.defensive_mode:
                return -2.0  # Tighter in defensive mode
            else:
                return -3.5  # More room for positions to breathe
        elif self.current_regime in ["bearish_high_vol", "breakdown_bearish"]:
            return -1.5  # Tighter stop-loss in bearish regimes
        else:
            if self.defensive_mode:
                return -1.8
            else:
                return -2.5
    
    def update_portfolio_returns(self, daily_return):
        """Update portfolio return history"""
        self.portfolio_returns.append(daily_return)
        if len(self.portfolio_returns) > 60:  # Keep a rolling window
            self.portfolio_returns = self.portfolio_returns[-60:]



# region imports
from AlgorithmImports import *
# endregion
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from QuantConnect.Indicators import *
from datetime import timedelta, datetime
import numpy as np
import pandas as pd
import torch
import os
import torch.nn as nn

from strategy import KQTStrategy

def calculate_ema(prices, span):
    return pd.Series(prices).ewm(span=span, adjust=False).mean().values

def calculate_rsi(prices, period=14):
    deltas = np.diff(prices)
    seed = deltas[:period+1]
    up = seed[seed >= 0].sum()/period
    down = -seed[seed < 0].sum()/period
    if down == 0: return 100
    rs = up/down
    rsi = np.zeros_like(prices)
    rsi[:period] = 100. - 100./(1. + rs)
    for i in range(period, len(prices)):
        delta = deltas[i-1]
        if delta > 0:
            upval = delta
            downval = 0.
        else:
            upval = 0.
            downval = -delta
        up = (up * (period-1) + upval) / period
        down = (down * (period-1) + downval) / period
        rs = up/down if down != 0 else float('inf')
        rsi[i] = 100. - 100./(1. + rs)
    return rsi

def calculate_macd(prices, fast=12, slow=26, signal=9):
    prices = np.array(prices)
    ema_fast = pd.Series(prices).ewm(span=fast, adjust=False).mean().values
    ema_slow = pd.Series(prices).ewm(span=slow, adjust=False).mean().values
    macd_line = ema_fast - ema_slow
    signal_line = pd.Series(macd_line).ewm(span=signal, adjust=False).mean().values
    histogram = macd_line - signal_line
    return macd_line, signal_line, histogram

def calculate_atr(high, low, close, period=14):
    if len(high) != len(low) or len(high) != len(close):
        raise ValueError("Input arrays must have the same length")
    tr = np.zeros(len(high))
    tr[0] = high[0] - low[0]
    for i in range(1, len(tr)):
        tr[i] = max(
            high[i] - low[i],
            abs(high[i] - close[i-1]),
            abs(low[i] - close[i-1])
        )
    atr = np.zeros_like(tr)
    atr[0] = tr[0]
    for i in range(1, len(atr)):
        atr[i] = (atr[i-1] * (period-1) + tr[i]) / period
    return atr

class KQTAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2019, 1, 1)
        self.SetEndDate(2024, 12, 31)
        self.SetCash(1000000)
        self.previous_portfolio_value = 0
        self.current_strategy_mode = "KQT"
        self.vix = self.AddIndex("VIX", Resolution.Daily).Symbol
        self.vix_threshold = 30
        self.SetBenchmark("SPY")
        self.strategy = KQTStrategy()
        self.kqt_lookback = 60
        self.kqt_tickers = []
        self.kqt_symbols = {}
        self.kqt_sector_mappings = {}
        self.strategy.sector_mappings = self.kqt_sector_mappings
        self.kqt_stock_data = {}
        self.kqt_current_predictions = {}
        self.kqt_previous_positions = {}
        self.kqt_stopped_out = set()
        self.rc_spy = self.AddEquity("SPY", Resolution.Daily).Symbol
        self.rc_bil = self.AddEquity("BIL", Resolution.Daily).Symbol
        self.rc_selected_by_market_cap = []
        self.rc_rebalance_flag = False
        self.rc_spy_30day_window = RollingWindow[float](30)
        self.rc_entry_prices = {}
        self.rc_previous_bil_allocation = 0.0
        self.rc_trend_lookback = 10
        self.rc_spy_prices = {}
        self.rc_max_spy_history = 60
        self.rc_stop_loss_base = 0.04
        self.rc_dynamic_stop_weight = 0.5
        self.rc_atr_period = 14
        self.rc_atr = {}
        self.rc_defensive_positions = set()
        self.rc_last_defensive_update = datetime(1900, 1, 1)
        self.rc_last_rebalance_date = datetime(1900, 1, 1)
        
        # Modified tolerances to reduce trading frequency
        self.kqt_rebalance_tolerance = 0.02  # Increased from 0.01 to 2%
        self.rc_rebalance_tolerance = 0.02   # Increased from 0.01 to 2%
        
        # Add cooldown for mode switching
        self.last_mode_switch_time = None
        self.min_days_between_switches = 5
        
        self.rc_sh = self.AddEquity("SH", Resolution.Daily).Symbol
        self.rc_psq = self.AddEquity("PSQ", Resolution.Daily).Symbol
        self.rc_dog = self.AddEquity("DOG", Resolution.Daily).Symbol
        self.rc_rwm = self.AddEquity("RWM", Resolution.Daily).Symbol
        self.rc_eum = self.AddEquity("EUM", Resolution.Daily).Symbol
        self.rc_myd = self.AddEquity("MYY", Resolution.Daily).Symbol
        self.rc_gld = self.AddEquity("GLD", Resolution.Daily).Symbol
        self.rc_ief = self.AddEquity("IEF", Resolution.Daily).Symbol
        self.rc_bnd = self.AddEquity("BND", Resolution.Daily).Symbol
        self.rc_xlp = self.AddEquity("XLP", Resolution.Daily).Symbol
        self.rc_xlu = self.AddEquity("XLU", Resolution.Daily).Symbol
        self.rc_xlv = self.AddEquity("XLV", Resolution.Daily).Symbol
        self.rc_vht = self.AddEquity("VHT", Resolution.Daily).Symbol
        self.rc_vdc = self.AddEquity("VDC", Resolution.Daily).Symbol
        
        self.rc_inverse_etfs = [self.rc_sh, self.rc_psq, self.rc_dog, self.rc_rwm, self.rc_eum, self.rc_myd]
        self.rc_alternative_defensive = [self.rc_gld, self.rc_ief, self.rc_bnd]
        self.rc_sector_defensive = [self.rc_xlp, self.rc_xlu, self.rc_xlv, self.rc_vht, self.rc_vdc]
        self.rc_all_defensive = self.rc_inverse_etfs + self.rc_alternative_defensive + self.rc_sector_defensive
        self.rc_diagnostic_mode = True
        
        for symbol in self.rc_all_defensive + [self.rc_bil, self.rc_spy]:
            self.rc_atr[symbol] = self.ATR(symbol, self.rc_atr_period, Resolution.Daily)
        
        self.UniverseSettings.Resolution = Resolution.Daily
        self._universe = self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        
        self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.At(10, 0), self.TradeExecute)
        self.Schedule.On(self.DateRules.MonthStart(self.rc_spy), self.TimeRules.AfterMarketOpen(self.rc_spy, 30), self.SetRebalanceFlag)
        self.Schedule.On(self.DateRules.WeekStart(self.rc_spy, DayOfWeek.Wednesday), self.TimeRules.AfterMarketOpen(self.rc_spy, 30), self.MonthlyRebalance)
        self.Schedule.On(self.DateRules.WeekStart(self.rc_spy, DayOfWeek.Monday), self.TimeRules.AfterMarketOpen(self.rc_spy, 60), self.WeeklyDefensiveAdjustment)
        self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.vix, 5), self.CheckVixAndManageState)
        
        self.spy = self.rc_spy
        self.spy_sma50 = self.SMA(self.spy, 50, Resolution.Daily)
        self.spy_sma200 = self.SMA(self.spy, 200, Resolution.Daily)
        
        history_spy = self.History(self.spy, 200, Resolution.Daily)
        if not history_spy.empty:
            for time, row in history_spy.loc[self.spy].iterrows():
                close_price = row["close"]
                self.rc_spy_30day_window.Add(close_price)
                self.spy_sma50.Update(time, close_price)
                self.spy_sma200.Update(time, close_price)
        
        self.TryLoadModelWeights()

    def CheckVixAndManageState(self):
        if not self.Securities.ContainsKey(self.vix) or not self.Securities[self.vix].HasData or \
           not self.Securities.ContainsKey(self.spy) or not self.Securities[self.spy].HasData or \
           not self.spy_sma50.IsReady or not self.spy_sma200.IsReady:
            self.Log("Data not ready for state check (VIX, SPY, or SMAs).")
            return

        vix_value = self.Securities[self.vix].Price
        spy_price = self.Securities[self.spy].Price
        sma50_value = self.spy_sma50.Current.Value
        sma200_value = self.spy_sma200.Current.Value

        is_bearish_trend = spy_price < sma200_value or sma50_value < sma200_value
        is_bullish_trend = spy_price > sma200_value and sma50_value > sma200_value
        is_vix_high = vix_value > self.vix_threshold
        is_vix_low = vix_value < 20

        if self.current_strategy_mode == "KQT":
            if is_vix_high and is_bearish_trend:
                if self.last_mode_switch_time is None or (self.Time - self.last_mode_switch_time).days >= self.min_days_between_switches:
                    self.Log(f"Conditions met to ENTER RiskControl: VIX {vix_value:.2f} > {self.vix_threshold} AND Bearish Trend (SPY {spy_price:.2f} vs SMA200 {sma200_value:.2f}, SMA50 {sma50_value:.2f} vs SMA200 {sma200_value:.2f}).")
                    self.EnterRiskControlMode()
                    self.last_mode_switch_time = self.Time
                else:
                    self.Log(f"Conditions met but too soon since last switch ({(self.Time - self.last_mode_switch_time).days} days).")
        
        elif self.current_strategy_mode == "RiskControl":
            if is_vix_low and is_bullish_trend:
                if self.last_mode_switch_time is None or (self.Time - self.last_mode_switch_time).days >= self.min_days_between_switches:
                    self.Log(f"Conditions met to EXIT RiskControl: VIX {vix_value:.2f} < 20 AND Bullish Trend (SPY {spy_price:.2f} > SMA200 {sma200_value:.2f}, SMA50 {sma50_value:.2f} > SMA200 {sma200_value:.2f}).")
                    self.ExitRiskControlMode()
                    self.last_mode_switch_time = self.Time
                else:
                    self.Log(f"Conditions met but too soon since last switch ({(self.Time - self.last_mode_switch_time).days} days).")

    # Remaining methods unchanged to preserve performance
    def CoarseSelectionFunction(self, coarse):
        if self.current_strategy_mode == "KQT":
            sorted_by_dollar_volume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True)
            return [x.Symbol for x in sorted_by_dollar_volume[:500]]
        elif self.current_strategy_mode == "RiskControl":
            filtered = [x for x in coarse if x.HasFundamentalData and x.Price > 5 and x.Market == Market.USA]
            symbols = [x.Symbol for x in filtered]
            symbols.extend(self.rc_all_defensive)
            symbols.append(self.rc_bil)
            return list(set(symbols))
        else:
            return []

    def FineSelectionFunction(self, fine):
        if self.current_strategy_mode == "KQT":
            sorted_by_market_cap = sorted(fine, key=lambda x: x.MarketCap, reverse=True)
            selected = sorted_by_market_cap[:100]
            self.kqt_tickers = []
            self.kqt_symbols = {}
            for f in selected:
                ticker = f.Symbol.Value
                self.kqt_tickers.append(ticker)
                self.kqt_symbols[ticker] = f.Symbol
                sector = "Unknown"
                try:
                    if hasattr(f, 'AssetClassification') and f.AssetClassification is not None:
                        if hasattr(f.AssetClassification, 'MorningstarSectorCode'): sector = str(f.AssetClassification.MorningstarSectorCode)
                        elif hasattr(f.AssetClassification, 'GicsSectorCode'): sector = str(f.AssetClassification.GicsSectorCode)
                        elif hasattr(f.AssetClassification, 'Sector'): sector = f.AssetClassification.Sector
                        elif hasattr(f.AssetClassification, 'Industry'): sector = f.AssetClassification.Industry
                except Exception as e:
                    self.Debug(f"KQT Fine - Error getting sector for {ticker}: {str(e)}")
                self.kqt_sector_mappings[ticker] = sector
            return [f.Symbol for f in selected]
        elif self.current_strategy_mode == "RiskControl":
            equity_fine = [x for x in fine if x.SecurityReference.SecurityType == "ST00000001" and x.MarketCap > 1e10]
            sorted_by_cap = sorted(equity_fine, key=lambda x: x.MarketCap, reverse=True)[:30]
            self.rc_selected_by_market_cap = [(x.Symbol, x.MarketCap) for x in sorted_by_cap]
            symbols = [x.Symbol for x in sorted_by_cap]
            symbols.extend(self.rc_all_defensive)
            symbols.append(self.rc_bil)
            return list(set(symbols))
        else:
            return []

    def OnSecuritiesChanged(self, changes):
        self.Log(f"OnSecuritiesChanged ({self.current_strategy_mode} mode): Added {len(changes.AddedSecurities)}, Removed {len(changes.RemovedSecurities)}")
        for removed in changes.RemovedSecurities:
            ticker = removed.Symbol.Value
            if ticker in self.kqt_tickers: self.kqt_tickers.remove(ticker)
            if ticker in self.kqt_symbols: del self.kqt_symbols[ticker]
            if ticker in self.kqt_sector_mappings: del self.kqt_sector_mappings[ticker]
            if ticker in self.kqt_stock_data: del self.kqt_stock_data[ticker]
            if self.Portfolio[removed.Symbol].Invested:
                self.Log(f"Liquidating {removed.Symbol.Value} due to removal from universe.")
                self.Liquidate(removed.Symbol)

    def EnterRiskControlMode(self):
        self.Log("Transitioning to RiskControl: Liquidating KQT assets.")
        liquidated_count = 0
        rc_symbols_to_keep = set(self.rc_all_defensive + [self.rc_bil, self.rc_spy])
        for holding in self.Portfolio.Values:
            if holding.Invested and holding.Symbol not in rc_symbols_to_keep:
                self.Log(f"  Liquidating {holding.Symbol.Value} (KQT asset).")
                self.Liquidate(holding.Symbol)
                liquidated_count += 1
        self.Log(f"Liquidated {liquidated_count} KQT assets.")
        self.kqt_current_predictions = {}
        self.kqt_previous_positions = {}
        self.kqt_stopped_out.clear()
        self.current_strategy_mode = "RiskControl"
        self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction))
        self.Log("Setting initial RiskControl position to 100% BIL.")
        self.SetHoldings(self.rc_bil, 1.0)
        self.rc_previous_bil_allocation = 1.0
        self.rc_last_rebalance_date = self.Time

    def ExitRiskControlMode(self):
        self.Log("Transitioning back to KQT: Liquidating RiskControl assets.")
        liquidated_count = 0
        rc_symbols_to_liquidate = set(self.rc_all_defensive + [self.rc_bil])
        for holding in self.Portfolio.Values:
            if holding.Invested and holding.Symbol in rc_symbols_to_liquidate:
                self.Log(f"  Liquidating {holding.Symbol.Value} (RC asset).")
                self.Liquidate(holding.Symbol)
                liquidated_count += 1
        self.Log(f"Liquidated {liquidated_count} RiskControl assets.")
        self.rc_selected_by_market_cap = []
        self.rc_rebalance_flag = False
        self.rc_entry_prices = {}
        self.rc_previous_bil_allocation = 0.0
        self.rc_defensive_positions.clear()
        self.current_strategy_mode = "KQT"
        self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseSelectionFunction, self.FineSelectionFunction))

    def OnData(self, data):
        if data.Bars.ContainsKey(self.spy):
            spy_close = data.Bars[self.spy].Close
            self.rc_spy_30day_window.Add(spy_close)
            self.spy_sma50.Update(self.Time, spy_close)
            self.spy_sma200.Update(self.Time, spy_close)
            self.rc_spy_prices[self.Time.date()] = spy_close
            dates_to_remove = [date for date in self.rc_spy_prices if (self.Time.date() - date).days > self.rc_max_spy_history]
            for date in dates_to_remove: self.rc_spy_prices.pop(date)
        
        if self.current_strategy_mode == "RiskControl":
            stop_loss_triggered = False
            market_trend = self._rc_calculateMarketTrend()
            for symbol in list(self.Portfolio.Keys):
                if symbol not in self.Portfolio: continue
                holding = self.Portfolio[symbol]
                if holding.Invested and symbol != self.rc_bil:
                    current_price = self.Securities[symbol].Price
                    if current_price <= 0: continue
                    if symbol not in self.rc_entry_prices:
                        if holding.AveragePrice > 0:
                            self.rc_entry_prices[symbol] = holding.AveragePrice
                            self.Log(f"Warning: Missing entry price for {symbol}. Using average price {holding.AveragePrice} for stop-loss check.")
                        else:
                            self.Log(f"Warning: Cannot check stop-loss for {symbol}. Missing entry price and invalid average price.")
                            continue
                    entry_price = self.rc_entry_prices[symbol]
                    if entry_price <= 0: continue
                    price_drop = (entry_price - current_price) / entry_price
                    stop_threshold = self.rc_stop_loss_base
                    if market_trend < -0.03: stop_threshold *= 0.9
                    elif market_trend > 0.03: stop_threshold *= 1.1
                    if symbol in self.rc_atr and self.rc_atr[symbol].IsReady:
                        current_atr = self.rc_atr[symbol].Current.Value
                        atr_pct = current_atr / current_price if current_price > 0 else 0
                        effective_weight = self.rc_dynamic_stop_weight
                        if atr_pct > stop_threshold * 1.2: effective_weight = min(self.rc_dynamic_stop_weight, 0.3)
                        stop_threshold = ((1 - effective_weight) * stop_threshold + effective_weight * atr_pct)
                    if price_drop >= stop_threshold:
                        self.Log(f"RiskControl Stop-loss triggered for {symbol} at {current_price}, drop: {price_drop*100:.1f}%, threshold: {stop_threshold*100:.1f}%")
                        self.Liquidate(symbol, "RiskControl Stop Loss")
                        stop_loss_triggered = True
                        if symbol in self.rc_entry_prices: del self.rc_entry_prices[symbol]

    def TradeExecute(self):
        if not self.Securities.ContainsKey(self.spy) or not self.Securities[self.spy].Exchange.ExchangeOpen:
            return
        self.Log(f"TradeExecute running in {self.current_strategy_mode} mode at {self.Time}")
        if self.current_strategy_mode == "KQT":
            self.Log(f"KQT: Current universe size: {len(self.kqt_tickers)}")
            self.UpdateKQTHistoricalData()
            self.kqt_current_predictions = self.GenerateKQTPredictions()
            self.ProcessKQTStopLosses()
            market_returns = self.GetMarketReturns()
            target_positions = self.strategy.generate_positions(self.kqt_current_predictions, market_returns, algorithm=self)
            self.ExecuteKQTTrades(target_positions)
            daily_return = self.CalculatePortfolioReturn()
            self.strategy.update_portfolio_returns(daily_return)
            self.previous_portfolio_value = self.Portfolio.TotalPortfolioValue
        elif self.current_strategy_mode == "RiskControl":
            self.Log("RiskControl mode active. Main logic runs on schedule.")
            pass

    def UpdateKQTHistoricalData(self):
        self.Log(f"KQT: Updating history for {len(self.kqt_tickers)} tickers.")
        active_tickers = list(self.kqt_symbols.keys())
        if not active_tickers:
            self.kqt_stock_data = {}
            return
        symbols_to_request = [self.kqt_symbols[ticker] for ticker in active_tickers]
        history = self.History(symbols_to_request, self.kqt_lookback + 5, Resolution.Daily)
        if history.empty:
            self.kqt_stock_data = {}
            return
        history = history.reset_index()
        new_stock_data = {}
        for ticker in active_tickers:
            symbol_obj = self.kqt_symbols[ticker]
            symbol_history = history[history['symbol'] == symbol_obj]
            if not symbol_history.empty and len(symbol_history) >= self.kqt_lookback:
                new_stock_data[ticker] = symbol_history
        self.kqt_stock_data = new_stock_data
        self.Log(f"KQT: Updated history for {len(self.kqt_stock_data)} tickers.")

    def GenerateKQTPredictions(self):
        predictions = {}
        self.Log(f"KQT: Generating fallback predictions for {len(self.kqt_stock_data)} stocks.")
        for ticker, history_df in self.kqt_stock_data.items():
            if ticker not in self.kqt_symbols: continue
            try:
                closes = history_df['close'].values
                if len(closes) > 20:
                    short_ma = np.mean(closes[-5:])
                    long_ma = np.mean(closes[-20:])
                    momentum = closes[-1] / closes[-10] - 1 if len(closes) > 10 else 0
                    pred_score = momentum + 0.5 * (short_ma/long_ma - 1) if long_ma != 0 else momentum
                    pred_return = pred_score * 2
                    threshold = 0.1
                    predictions[ticker] = {
                        "pred_return": pred_return,
                        "composite_score": pred_return / threshold if threshold != 0 else pred_return
                    }
            except Exception as e:
                self.Log(f"KQT Error processing {ticker} in GenerateKQTPredictions: {str(e)}")
                continue
        self.Log(f"KQT: Generated {len(predictions)} predictions.")
        return predictions

    def ProcessKQTStopLosses(self):
        stop_loss_level = self.strategy.get_stop_loss_level()
        self.kqt_stopped_out.clear()
        for ticker in list(self.kqt_symbols.keys()):
            symbol = self.kqt_symbols[ticker]
            if not self.Portfolio[symbol].Invested: continue
            position = self.Portfolio[symbol]
            history = self.History(symbol, 2, Resolution.Daily)
            if history.empty or len(history) < 2: continue
            close_prices = history.loc[symbol]['close'] if symbol in history.index else pd.Series()
            if len(close_prices) < 2: continue
            daily_return = (close_prices.iloc[-1] / close_prices.iloc[-2] - 1) * 100
            position_type = "long" if position.Quantity > 0 else "short"
            hit_stop = False
            if position_type == "long" and daily_return < stop_loss_level:
                hit_stop = True
                self.Log(f"KQT Stop loss triggered for {ticker} (long): {daily_return:.2f}% < {stop_loss_level:.2f}%")
            elif position_type == "short" and daily_return > abs(stop_loss_level):
                hit_stop = True
                self.Log(f"KQT Stop loss triggered for {ticker} (short): {daily_return:.2f}% > {abs(stop_loss_level):.2f}%")
            if hit_stop:
                self.kqt_stopped_out.add(ticker)
                self.Liquidate(symbol, f"KQT Stop Loss {daily_return:.2f}%")

    def ExecuteKQTTrades(self, target_positions):
        self.Log(f"--- KQT ExecuteTrades START ---")
        portfolio_value = self.Portfolio.TotalPortfolioValue
        if portfolio_value <= 0:
            self.Log("KQT ExecuteTrades: Zero or negative portfolio value. Cannot execute trades.")
            return
        final_targets = []
        processed_symbols = set()
        kqt_managed_symbols = set(self.kqt_symbols.values())
        min_exec_weight = 0.035
        initial_total_allocation = sum(abs(weight) for weight in target_positions.values())
        self.Log(f"KQT: Initial target allocation sum from strategy: {initial_total_allocation:.3f}")
        max_allowed_allocation = 0.99
        scaling_factor = 1.0
        if initial_total_allocation > max_allowed_allocation:
            scaling_factor = max_allowed_allocation / initial_total_allocation
            self.Log(f"KQT: Scaling positions by {scaling_factor:.3f} to meet max allocation {max_allowed_allocation*100}%. Original total: {initial_total_allocation:.3f}")
        for ticker, target_weight in target_positions.items():
            scaled_target_weight = target_weight * scaling_factor
            if ticker in self.kqt_stopped_out:
                self.Log(f"KQT: Skipping trade for {ticker}, recently stopped out. Will check for liquidation later.")
                if ticker in self.kqt_symbols:
                    processed_symbols.add(self.kqt_symbols[ticker])
                continue
            if ticker not in self.kqt_symbols:
                self.Log(f"KQT: Skipping trade for {ticker}, not in current KQT symbols map.")
                continue
            symbol = self.kqt_symbols[ticker]
            processed_symbols.add(symbol)
            try:
                target_weight_float = float(scaled_target_weight)
                if not np.isfinite(target_weight_float):
                    raise ValueError("Non-finite weight")
            except ValueError:
                self.Log(f"KQT: Invalid/Non-finite target weight for {ticker}: {scaled_target_weight}. Skipping.")
                continue
            current_holding = self.Portfolio[symbol]
            current_weight = current_holding.HoldingsValue / portfolio_value if portfolio_value > 0 and current_holding.Invested else 0.0
            weight_difference = abs(target_weight_float - current_weight)
            is_significant_target = abs(target_weight_float) >= min_exec_weight
            is_currently_invested = current_holding.Invested
            if is_significant_target:
                if not is_currently_invested or weight_difference > self.kqt_rebalance_tolerance:
                    self.Log(f"KQT: Setting target for {ticker} to {target_weight_float:.4f} (Current: {current_weight:.4f}, Diff: {weight_difference:.4f}, Tol: {self.kqt_rebalance_tolerance})")
                    final_targets.append(PortfolioTarget(symbol, target_weight_float))
                else:
                    self.Log(f"KQT: Skipping target for {ticker} ({target_weight_float:.4f}), change vs current ({current_weight:.4f}) within tolerance.")
            elif is_currently_invested:
                if weight_difference > self.kqt_rebalance_tolerance:
                    self.Log(f"KQT: Liquidating {ticker} (Current: {current_weight:.4f}) due to near-zero target ({target_weight_float:.4f}) and significant difference.")
                    final_targets.append(PortfolioTarget(symbol, 0))
                else:
                    self.Log(f"KQT: Skipping liquidation for {ticker} ({target_weight_float:.4f}), change vs current ({current_weight:.4f}) within tolerance.")
        for holding in self.Portfolio.Values:
            if not holding.Invested or holding.Symbol not in kqt_managed_symbols:
                continue
            symbol = holding.Symbol
            ticker = symbol.Value
            current_weight = holding.HoldingsValue / portfolio_value
            if ticker in self.kqt_stopped_out and symbol not in [t.Symbol for t in final_targets if t.Quantity == 0]:
                if current_weight > self.kqt_rebalance_tolerance:
                    self.Log(f"KQT: Adding liquidation target for stopped-out {ticker} (Current: {current_weight:.4f})")
                    final_targets.append(PortfolioTarget(symbol, 0))
                continue
            if symbol not in processed_symbols and symbol not in [t.Symbol for t in final_targets]:
                if current_weight > self.kqt_rebalance_tolerance:
                    self.Log(f"KQT: Adding liquidation target for untargeted holding {ticker} (Current: {current_weight:.4f})")
                    final_targets.append(PortfolioTarget(symbol, 0))
                else:
                    self.Log(f"KQT: Skipping liquidation for untargeted {ticker}, current weight ({current_weight:.4f}) within tolerance from zero.")
        if final_targets:
            self.Log(f"KQT: Submitting {len(final_targets)} targets to SetHoldings after tolerance check.")
            self.SetHoldings(final_targets)
        else:
            self.Log("KQT: No targets needed after tolerance check.")
        self.Log(f"--- KQT ExecuteTrades END ---")
        self.kqt_previous_positions = target_positions

    def GetMarketReturns(self):
        spy_history = self.History(self.spy, 15, Resolution.Daily)
        if spy_history.empty or len(spy_history) < 2: return []
        spy_prices = spy_history.loc[self.spy]['close'] if self.spy in spy_history.index else pd.Series()
        if len(spy_prices) < 2: return []
        spy_returns = spy_prices.pct_change().dropna() * 100
        return spy_returns.tolist()[-10:]

    def CalculatePortfolioReturn(self):
        current_value = self.Portfolio.TotalPortfolioValue
        if self.previous_portfolio_value > 0:
            return (current_value / self.previous_portfolio_value - 1) * 100
        return 0

    def TryLoadModelWeights(self):
        try:
            if self.ObjectStore.ContainsKey("kqt_model_weights"):
                self.Debug("Found model weights in ObjectStore, loading...")
                encoded_bytes = self.ObjectStore.Read("kqt_model_weights")
                import base64
                model_bytes = base64.b64decode(encoded_bytes)
                import tempfile
                with tempfile.NamedTemporaryFile(delete=False, suffix='.pth') as temp:
                    temp_path = temp.name
                    temp.write(model_bytes)
                state_dict = torch.load(temp_path)
                input_shape = state_dict['embedding.0.weight'].shape
                actual_input_size = input_shape[1]
                self.Debug(f"Detected input size from weights: {actual_input_size}")
                self.Debug("Successfully loaded model weights")
                import os
                os.unlink(temp_path)
            else:
                self.Debug("No model weights found in ObjectStore")
        except Exception as e:
            self.Debug(f"Error loading model weights: {str(e)}")

    def SetRebalanceFlag(self):
        if self.current_strategy_mode == "RiskControl":
            if self.Time.weekday() == 2:
                self.rc_rebalance_flag = True
                self.Log("RiskControl: Set rebalance flag for Wednesday.")

    def MonthlyRebalance(self):
        if self.current_strategy_mode != "RiskControl" or not self.rc_rebalance_flag:
            return
        self.Log("--- RiskControl MonthlyRebalance START ---")
        portfolio_value = self.Portfolio.TotalPortfolioValue
        if portfolio_value <= 0:
            self.Log("RiskControl MonthlyRebalance: Zero or negative portfolio value.")
            return
        self.rc_rebalance_flag = False
        self.rc_entry_prices.clear()
        if self.rc_spy_30day_window.Count < 30:
            self.Log("RiskControl: Waiting for enough SPY history for rebalance.")
            return
        spy_price = self.Securities[self.spy].Price
        sma_30 = sum(self.rc_spy_30day_window) / self.rc_spy_30day_window.Count
        market_deviation = (spy_price / sma_30) - 1.0 if sma_30 > 0 else 0.0
        market_trend = self._rc_calculateMarketTrend()
        bil_weight = 0.0
        bil_weight = min(bil_weight, 0.10)
        self.Log(f"RC Rebalance: Calculated initial BIL weight: {bil_weight:.1%}")
        defensive_etf_potential = bil_weight * 0.4
        all_defensive_allocations = self._rc_evaluateDefensiveETFs(market_deviation, market_trend, defensive_etf_potential)
        total_defensive_allocation = sum(all_defensive_allocations.values())
        bil_weight -= total_defensive_allocation
        if total_defensive_allocation > 0.05: bil_weight = min(bil_weight, 0.15)
        elif total_defensive_allocation > 0.01: bil_weight = min(bil_weight, 0.25)
        bil_weight = max(0, bil_weight)
        bil_weight = min(bil_weight, 0.10)
        self.Log(f"RC Rebalance: Adjusted BIL weight after defensive: {bil_weight:.1%}")
        equity_weight = max(0, 1.0 - bil_weight - total_defensive_allocation)
        self.Log(f"RC Rebalance - Market Dev: {market_deviation:.2%}, Trend: {market_trend:.2%}")
        self.Log(f"RC Final Allocation Targets: Equity {equity_weight:.1%}, BIL {bil_weight:.1%}, Defensive {total_defensive_allocation:.1%}")
        momentum_scores = self._rc_calculateSimpleMomentum()
        filtered_stocks = [(s, mcap) for s, mcap in self.rc_selected_by_market_cap if momentum_scores.get(s, 1.0) >= 0.9]
        if len(filtered_stocks) < 20: filtered_stocks = self.rc_selected_by_market_cap
        total_market_cap = sum([x[1] for x in filtered_stocks])
        equity_weights = {s: (mcap / total_market_cap) * equity_weight for s, mcap in filtered_stocks} if total_market_cap > 0 and equity_weight > 0 else {}
        final_targets = []
        symbols_targeted_for_investment = set()
        rc_equity_symbols = {s for s, _ in self.rc_selected_by_market_cap}
        rc_managed_symbols = rc_equity_symbols | set(self.rc_all_defensive) | {self.rc_bil}
        if equity_weight > 0:
            for symbol, target_weight in equity_weights.items():
                if target_weight > 0.001:
                    current_holding = self.Portfolio[symbol]
                    current_weight = current_holding.HoldingsValue / portfolio_value if portfolio_value > 0 and current_holding.Invested else 0.0
                    weight_difference = abs(target_weight - current_weight)
                    if not current_holding.Invested or weight_difference > self.rc_rebalance_tolerance:
                        self.Log(f"RC Rebalance: Setting Equity target {symbol.Value} to {target_weight:.4f} (Current: {current_weight:.4f}, Diff: {weight_difference:.4f})")
                        final_targets.append(PortfolioTarget(symbol, target_weight))
                        symbols_targeted_for_investment.add(symbol)
                        self.rc_entry_prices[symbol] = self.Securities[symbol].Price
                    else:
                        self.Log(f"RC Rebalance: Skipping Equity target {symbol.Value} ({target_weight:.4f}), change vs current ({current_weight:.4f}) within tolerance.")
                        if current_holding.Invested: symbols_targeted_for_investment.add(symbol)
        current_holding_bil = self.Portfolio[self.rc_bil]
        current_weight_bil = current_holding_bil.HoldingsValue / portfolio_value if portfolio_value > 0 and current_holding_bil.Invested else 0.0
        weight_difference_bil = abs(bil_weight - current_weight_bil)
        if bil_weight > 0.001:
            if not current_holding_bil.Invested or weight_difference_bil > self.rc_rebalance_tolerance:
                self.Log(f"RC Rebalance: Setting BIL target to {bil_weight:.4f} (Current: {current_weight_bil:.4f}, Diff: {weight_difference_bil:.4f})")
                final_targets.append(PortfolioTarget(self.rc_bil, bil_weight))
                symbols_targeted_for_investment.add(self.rc_bil)
            else:
                self.Log(f"RC Rebalance: Skipping BIL target ({bil_weight:.4f}), change vs current ({current_weight_bil:.4f}) within tolerance.")
                if current_holding_bil.Invested: symbols_targeted_for_investment.add(self.rc_bil)
        self.rc_defensive_positions.clear()
        if total_defensive_allocation > 0:
            for symbol, target_weight in all_defensive_allocations.items():
                if target_weight > 0.001:
                    current_holding_def = self.Portfolio[symbol]
                    current_weight_def = current_holding_def.HoldingsValue / portfolio_value if portfolio_value > 0 and current_holding_def.Invested else 0.0
                    weight_difference_def = abs(target_weight - current_weight_def)
                    if not current_holding_def.Invested or weight_difference_def > self.rc_rebalance_tolerance:
                        self.Log(f"RC Rebalance: Setting Defensive target {symbol.Value} to {target_weight:.4f} (Current: {current_weight_def:.4f}, Diff: {weight_difference_def:.4f})")
                        final_targets.append(PortfolioTarget(symbol, target_weight))
                        symbols_targeted_for_investment.add(symbol)
                        self.rc_defensive_positions.add(symbol)
                        self.rc_entry_prices[symbol] = self.Securities[symbol].Price
                    else:
                        self.Log(f"RC Rebalance: Skipping Defensive target {symbol.Value} ({target_weight:.4f}), change vs current ({current_weight_def:.4f}) within tolerance.")
                        if current_holding_def.Invested:
                            symbols_targeted_for_investment.add(symbol)
                            self.rc_defensive_positions.add(symbol)
        for holding in self.Portfolio.Values:
            if holding.Invested and holding.Symbol in rc_managed_symbols and holding.Symbol not in symbols_targeted_for_investment:
                current_weight = holding.HoldingsValue / portfolio_value
                if abs(0 - current_weight) > self.rc_rebalance_tolerance:
                    self.Log(f"RC Rebalance: Liquidating untargeted RC asset {holding.Symbol.Value} (Current: {current_weight:.4f})")
                    final_targets.append(PortfolioTarget(holding.Symbol, 0))
                else:
                    self.Log(f"RC Rebalance: Skipping liquidation for untargeted {holding.Symbol.Value}, current weight ({current_weight:.4f}) within tolerance from zero.")
        if final_targets:
            self.Log(f"RC Rebalance: Submitting {len(final_targets)} targets to SetHoldings after tolerance check.")
            self.SetHoldings(final_targets)
        else:
            self.Log("RC Rebalance: No targets needed after tolerance check.")
        self.rc_last_rebalance_date = self.Time
        self.rc_previous_bil_allocation = self.Portfolio[self.rc_bil].HoldingsValue / portfolio_value if portfolio_value > 0 else 0
        self.Log(f"--- RiskControl MonthlyRebalance END (New BIL Alloc: {self.rc_previous_bil_allocation:.1%}) ---")

    def WeeklyDefensiveAdjustment(self):
        if self.current_strategy_mode != "RiskControl": return
        days_since_rebalance = (self.Time.date() - self.rc_last_rebalance_date.date()).days
        if days_since_rebalance < 3: return
        days_since_update = (self.Time.date() - self.rc_last_defensive_update.date()).days
        if days_since_update < 5: return
        self.Log("--- RiskControl WeeklyDefensiveAdjustment START ---")
        portfolio_value = self.Portfolio.TotalPortfolioValue
        if portfolio_value <= 0:
            self.Log("RC Weekly: Zero or negative portfolio value.")
            return
        spy_price = self.Securities[self.spy].Price
        sma_30 = sum(self.rc_spy_30day_window) / self.rc_spy_30day_window.Count if self.rc_spy_30day_window.Count > 0 else spy_price
        market_deviation = (spy_price / sma_30) - 1.0 if sma_30 > 0 else 0.0
        market_trend = self._rc_calculateMarketTrend()
        if market_deviation > 0.04 and market_trend > 0.03:
            self.Log("RC Weekly: Market too strong, skipping defensive additions.")
            liquidate_existing_defensives = False
            for s in self.rc_all_defensive:
                if self.Portfolio[s].Invested:
                    liquidate_existing_defensives = True
                    break
            if liquidate_existing_defensives:
                self.Log("RC Weekly: Liquidating existing defensive positions due to strong market.")
                liquidation_targets = []
                for s in self.rc_all_defensive:
                    if self.Portfolio[s].Invested:
                        current_weight = self.Portfolio[s].HoldingsValue / portfolio_value
                        if abs(0 - current_weight) > self.rc_rebalance_tolerance:
                            liquidation_targets.append(PortfolioTarget(s, 0))
                if liquidation_targets:
                    self.SetHoldings(liquidation_targets)
                    self.rc_defensive_positions.clear()
                    self.rc_last_defensive_update = self.Time
                else:
                    self.Log("RC Weekly: Existing defensive positions within tolerance from zero, no liquidation needed.")
            return
        current_bil_holding = self.Portfolio[self.rc_bil]
        current_bil_weight = current_bil_holding.HoldingsValue / portfolio_value if portfolio_value > 0 and current_bil_holding.Invested else 0.0
        total_invested_pct = sum(h.HoldingsValue for h in self.Portfolio.Values if h.Invested) / portfolio_value if portfolio_value > 0 else 0.0
        available_allocation = max(0, 0.99 - total_invested_pct)
        max_defensive_pct_from_bil = 0.25
        potential_allocation_from_bil = current_bil_weight * max_defensive_pct_from_bil
        potential_allocation = min(available_allocation, potential_allocation_from_bil)
        if potential_allocation < 0.01:
            self.Log(f"RC Weekly: Not enough potential allocation ({potential_allocation:.2%}) from BIL ({current_bil_weight:.1%}) or available space ({available_allocation:.1%}).")
            return
        self.Log(f"RC Weekly - Market Dev: {market_deviation:.2%}, Trend: {market_trend:.2%}")
        self.Log(f"RC Weekly - BIL: {current_bil_weight:.1%}, Potential Defensive: {potential_allocation:.1%}")
        new_defensive_allocations = self._rc_evaluateDefensiveETFs(market_deviation, market_trend, potential_allocation)
        final_targets = []
        symbols_targeted_for_investment = set()
        symbols_targeted_for_investment.add(self.rc_bil)
        total_new_defensive_target = sum(new_defensive_allocations.values())
        if total_new_defensive_target > potential_allocation:
            scale = potential_allocation / total_new_defensive_target if total_new_defensive_target > 0 else 0
            self.Log(f"RC Weekly: Scaling new defensive targets by {scale:.3f} (Total: {total_new_defensive_target:.2%}, Potential: {potential_allocation:.2%})")
            for s in new_defensive_allocations: new_defensive_allocations[s] *= scale
            total_new_defensive_target = sum(new_defensive_allocations.values())
        intended_bil_target_weight = max(0, current_bil_weight - total_new_defensive_target)
        current_rc_defensive_symbols = set(self.rc_all_defensive)
        for symbol in current_rc_defensive_symbols:
            target_weight = new_defensive_allocations.get(symbol, 0.0)
            current_holding = self.Portfolio[symbol]
            current_weight = current_holding.HoldingsValue / portfolio_value if portfolio_value > 0 and current_holding.Invested else 0.0
            weight_difference = abs(target_weight - current_weight)
            if target_weight > 0.01:
                if not current_holding.Invested or weight_difference > self.rc_rebalance_tolerance:
                    self.Log(f"RC Weekly: Setting Defensive target {symbol.Value} to {target_weight:.4f} (Current: {current_weight:.4f}, Diff: {weight_difference:.4f})")
                    final_targets.append(PortfolioTarget(symbol, target_weight))
                    symbols_targeted_for_investment.add(symbol)
                    self.rc_entry_prices[symbol] = self.Securities[symbol].Price
                else:
                    self.Log(f"RC Weekly: Skipping Defensive target {symbol.Value} ({target_weight:.4f}), change vs current ({current_weight:.4f}) within tolerance.")
                    if current_holding.Invested: symbols_targeted_for_investment.add(symbol)
            elif current_holding.Invested:
                if abs(0 - current_weight) > self.rc_rebalance_tolerance:
                    self.Log(f"RC Weekly: Liquidating Defensive {symbol.Value} (Current: {current_weight:.4f}) due to zero target.")
                    final_targets.append(PortfolioTarget(symbol, 0))
                else:
                    self.Log(f"RC Weekly: Skipping Defensive liquidation {symbol.Value}, current weight ({current_weight:.4f}) within tolerance from zero.")
        weight_difference_bil = abs(intended_bil_target_weight - current_bil_weight)
        if weight_difference_bil > self.rc_rebalance_tolerance:
            self.Log(f"RC Weekly: Adjusting BIL target to {intended_bil_target_weight:.4f} (Current: {current_bil_weight:.4f}, Diff: {weight_difference_bil:.4f})")
            final_targets.append(PortfolioTarget(self.rc_bil, intended_bil_target_weight))
            if intended_bil_target_weight <= 0.001:
                if self.rc_bil in symbols_targeted_for_investment:
                    symbols_targeted_for_investment.remove(self.rc_bil)
        else:
            self.Log(f"RC Weekly: Skipping BIL adjustment ({intended_bil_target_weight:.4f}), change vs current ({current_bil_weight:.4f}) within tolerance.")
        if final_targets:
            self.Log(f"RC Weekly: Submitting {len(final_targets)} targets to SetHoldings after tolerance check.")
            self.SetHoldings(final_targets)
            self.rc_defensive_positions.clear()
            for target in final_targets:
                if target.Symbol in self.rc_all_defensive and target.Quantity > 0:
                    self.rc_defensive_positions.add(target.Symbol)
            self.rc_last_defensive_update = self.Time
        else:
            self.Log("RC Weekly: No targets needed after tolerance check.")
            current_defensive = set()
            for s in self.rc_all_defensive:
                if self.Portfolio[s].Invested:
                    current_defensive.add(s)
            self.rc_defensive_positions = current_defensive
        self.Log("--- RiskControl WeeklyDefensiveAdjustment END ---")

    def _rc_calculateMarketTrend(self):
        if len(self.rc_spy_prices) < self.rc_trend_lookback + 1: return 0
        dates = sorted(self.rc_spy_prices.keys())
        if len(dates) <= self.rc_trend_lookback: return 0
        recent_price = self.rc_spy_prices[dates[-1]]
        older_price = self.rc_spy_prices[dates[-self.rc_trend_lookback]]
        return (recent_price / older_price) - 1.0 if older_price > 0 else 0.0

    def _rc_calculateSimpleMomentum(self):
        momentum_scores = {}
        symbols = [sym for sym, _ in self.rc_selected_by_market_cap]
        if not symbols: return momentum_scores
        history = self.History(symbols, 30, Resolution.Daily)
        if history.empty: return momentum_scores
        for symbol in symbols:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                if len(prices) >= 30:
                    mom = prices.iloc[-1] / prices.iloc[0] - 1 if prices.iloc[0] > 0 else 0.0
                    momentum_scores[symbol] = min(1.3, max(0.7, 1 + (mom * 2)))
        return momentum_scores

    def _rc_evaluateDefensiveETFs(self, market_deviation, market_trend, max_allocation):
        self.Log(f"RC: Evaluating defensive ETFs. Max Alloc: {max_allocation:.2%}")
        allocations = {symbol: 0 for symbol in self.rc_all_defensive}
        if market_deviation > 0.04 and market_trend > 0.02:
            self.Log("RC EvalDef: Market too strong, skipping.")
            return allocations
        history = self.History(self.rc_all_defensive + [self.spy], 60, Resolution.Daily)
        if history.empty:
            self.Log("RC EvalDef: History empty, skipping.")
            return allocations
        spy_perf = {}
        if self.spy in history.index.get_level_values(0):
            spy_prices = history.loc[self.spy]['close']
            if len(spy_prices) >= 30:
                spy_perf = {
                    "5d": spy_prices.iloc[-1] / spy_prices.iloc[-5] - 1 if len(spy_prices) >= 5 and spy_prices.iloc[-5] > 0 else 0,
                    "10d": spy_prices.iloc[-1] / spy_prices.iloc[-10] - 1 if len(spy_prices) >= 10 and spy_prices.iloc[-10] > 0 else 0,
                    "20d": spy_prices.iloc[-1] / spy_prices.iloc[-20] - 1 if len(spy_prices) >= 20 and spy_prices.iloc[-20] > 0 else 0,
                    "30d": spy_prices.iloc[-1] / spy_prices.iloc[-30] - 1 if len(spy_prices) >= 30 and spy_prices.iloc[-30] > 0 else 0
                }
        etf_scores = {}
        for group_name, group in [("Inverse", self.rc_inverse_etfs), ("Alternative", self.rc_alternative_defensive), ("Sector", self.rc_sector_defensive)]:
            for symbol in group:
                if symbol in history.index.get_level_values(0):
                    prices = history.loc[symbol]['close']
                    if len(prices) >= 30:
                        perf = {}
                        perf["5d"] = prices.iloc[-1] / prices.iloc[-5] - 1 if len(prices) >= 5 and prices.iloc[-5] > 0 else 0
                        perf["10d"] = prices.iloc[-1] / prices.iloc[-10] - 1 if len(prices) >= 10 and prices.iloc[-10] > 0 else 0
                        perf["20d"] = prices.iloc[-1] / prices.iloc[-20] - 1 if len(prices) >= 20 and prices.iloc[-20] > 0 else 0
                        perf["30d"] = prices.iloc[-1] / prices.iloc[-30] - 1 if len(prices) >= 30 and prices.iloc[-30] > 0 else 0
                        rel_perf = {p: perf[p] - spy_perf.get(p, 0) for p in spy_perf}
                        score = 0
                        if symbol in self.rc_inverse_etfs:
                            if market_deviation < -0.02: score = (perf["5d"] * 0.4) + (perf["10d"] * 0.4) + (perf["30d"] * 0.2) + (rel_perf.get("5d",0) + rel_perf.get("10d",0)) * 0.15
                            else: score = (perf["5d"] * 0.6) + (perf["10d"] * 0.3) + (perf["30d"] * 0.1)
                        elif symbol in self.rc_alternative_defensive:
                            score = (perf["5d"] * 0.3) + (perf["10d"] * 0.4) + (perf["30d"] * 0.3)
                            if market_deviation < -0.03: score += rel_perf.get("10d",0) * 0.2
                        else:
                            abs_score = (perf["5d"] * 0.3) + (perf["10d"] * 0.3) + (perf["30d"] * 0.4)
                            rel_score = (rel_perf.get("5d",0) * 0.3) + (rel_perf.get("10d",0) * 0.3) + (rel_perf.get("30d",0) * 0.4)
                            if market_deviation < -0.02: score = (abs_score * 0.4) + (rel_score * 0.6)
                            else: score = (abs_score * 0.6) + (rel_score * 0.4)
                        etf_scores[symbol] = score
        threshold = -0.007
        if market_deviation < -0.03: threshold = -0.01
        candidates = {s: score for s, score in etf_scores.items() if score > threshold}
        if not candidates:
            self.Log("RC EvalDef: No candidates passed threshold.")
            return allocations
        sorted_candidates = sorted(candidates.items(), key=lambda x: x[1], reverse=True)
        allocation_pct = 0.0
        if market_deviation < -0.05 or market_trend < -0.04: allocation_pct = 0.95
        elif market_deviation < -0.03 or market_trend < -0.02: allocation_pct = 0.8
        elif market_deviation < -0.01 or market_trend < -0.01: allocation_pct = 0.6
        else: allocation_pct = 0.4
        best_score = sorted_candidates[0][1] if sorted_candidates else 0
        allocation_pct *= min(1.0, max(0.5, (best_score + 0.02) * 4))
        num_etfs = 1
        if (market_deviation < -0.04 or market_trend < -0.03) and len(sorted_candidates) > 1:
            num_etfs = min(2, len(sorted_candidates))
        remaining_allocation = max_allocation * allocation_pct
        total_score = sum(score for _, score in sorted_candidates[:num_etfs])
        if total_score > 0:
            for i in range(num_etfs):
                symbol, score = sorted_candidates[i]
                weight = score / total_score if total_score > 0 else 1.0/num_etfs
                etf_allocation = remaining_allocation * weight
                if etf_allocation >= 0.02:
                    allocations[symbol] = etf_allocation
                    self.Log(f"RC EvalDef: Allocating {etf_allocation:.1%} to {symbol.Value} (Score: {score:.3f})")
        return allocations
from AlgorithmImports import *
import numpy as np
from datetime import timedelta, datetime

class RiskControlStrategyModule:

    def __init__(self, algorithm):
        self.algorithm = algorithm
        self.selected_by_market_cap = []
        self.rebalance_flag = False
        self.entry_prices = {}
        self.previous_bil_allocation = 0.0
        self.last_rebalance_date = datetime(1900, 1, 1)
        self.last_defensive_update = datetime(1900, 1, 1)

        # Symbols managed by this strategy
        self.spy = self.algorithm.AddEquity("SPY", Resolution.Daily).Symbol
        self.bil = self.algorithm.AddEquity("BIL", Resolution.Daily).Symbol
        self.sh = self.algorithm.AddEquity("SH", Resolution.Daily).Symbol
        self.psq = self.algorithm.AddEquity("PSQ", Resolution.Daily).Symbol
        self.dog = self.algorithm.AddEquity("DOG", Resolution.Daily).Symbol
        self.rwm = self.algorithm.AddEquity("RWM", Resolution.Daily).Symbol
        self.eum = self.algorithm.AddEquity("EUM", Resolution.Daily).Symbol
        self.myd = self.algorithm.AddEquity("MYY", Resolution.Daily).Symbol # Check ticker MYY vs MYD
        self.gld = self.algorithm.AddEquity("GLD", Resolution.Daily).Symbol
        self.ief = self.algorithm.AddEquity("IEF", Resolution.Daily).Symbol
        self.bnd = self.algorithm.AddEquity("BND", Resolution.Daily).Symbol
        self.xlp = self.algorithm.AddEquity("XLP", Resolution.Daily).Symbol
        self.xlu = self.algorithm.AddEquity("XLU", Resolution.Daily).Symbol
        self.xlv = self.algorithm.AddEquity("XLV", Resolution.Daily).Symbol
        self.vht = self.algorithm.AddEquity("VHT", Resolution.Daily).Symbol
        self.vdc = self.algorithm.AddEquity("VDC", Resolution.Daily).Symbol

        self.inverse_etfs = [self.sh, self.psq, self.dog, self.rwm, self.eum, self.myd]
        self.alternative_defensive = [self.gld, self.ief, self.bnd]
        self.sector_defensive = [self.xlp, self.xlu, self.xlv, self.vht, self.vdc]
        self.all_defensive = self.inverse_etfs + self.alternative_defensive + self.sector_defensive
        self.risk_control_symbols = set([self.spy, self.bil] + self.all_defensive) # Symbols primarily managed here

        self.defensive_positions = set() # Tracks symbols currently held as defensive by this strategy

        # Indicators
        self.spy_30day_window = RollingWindow[float](30)
        self.atr_period = 14
        self.atr = {}
        self.spy_prices = {} # For trend calculation
        self.max_spy_history = 60
        self.trend_lookback = 10

        # Settings
        self.stop_loss_base = 0.04
        self.dynamic_stop_weight = 0.5
        self.diagnostic_mode = True # Enable detailed diagnostics

        # Initialize indicators for relevant symbols
        self._initialize_indicators()


    def _initialize_indicators(self):
        # Initialize rolling window with historical data
        history = self.algorithm.History(self.spy, 30, Resolution.Daily)
        if not history.empty:
            for time, row in history.loc[self.spy].iterrows():
                self.spy_30day_window.Add(row["close"])

        # Initialize ATR for key symbols
        for symbol in self.all_defensive + [self.bil, self.spy]:
            # Check if symbol exists in Securities before creating indicator
            if self.algorithm.Securities.ContainsKey(symbol):
                 self.atr[symbol] = self.algorithm.ATR(symbol, self.atr_period, Resolution.Daily)
            else:
                 self.algorithm.Log(f"Warning: Symbol {symbol} not found for ATR initialization.")


    def Initialize(self):
        """Initialize specific settings for Risk Control mode"""
        self.algorithm.Log("Initializing Risk Control Strategy Module specific settings.")
        # Set benchmark? Or keep the main one? Let's keep the main one (SPY).
        # Universe selection specific to Risk Control
        self._universe = self.algorithm.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)

        # Schedules specific to Risk Control
        self.rebalance_schedule = self.algorithm.Schedule.On(self.algorithm.DateRules.MonthStart(self.spy),
                                        self.algorithm.TimeRules.AfterMarketOpen(self.spy, 30),
                                        self.SetRebalanceFlag)
        self.monthly_schedule = self.algorithm.Schedule.On(self.algorithm.DateRules.WeekStart(self.spy, DayOfWeek.Wednesday),
                                        self.algorithm.TimeRules.AfterMarketOpen(self.spy, 30),
                                        self.MonthlyRebalance)
        self.weekly_def_schedule = self.algorithm.Schedule.On(self.algorithm.DateRules.WeekStart(self.spy, DayOfWeek.Monday),
                                        self.algorithm.TimeRules.AfterMarketOpen(self.spy, 60),
                                        self.WeeklyDefensiveAdjustment)

    def Activate(self):
        """Actions to take when this strategy becomes active."""
        self.algorithm.Log("Activating Risk Control Strategy Module")
        # Ensure universe is active
        if not self._universe:
             self._universe = self.algorithm.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        # Reset state variables
        self.entry_prices.clear()
        self.previous_bil_allocation = 0.0
        self.last_rebalance_date = self.algorithm.Time - timedelta(days=31) # Ensure rebalance runs soon
        self.last_defensive_update = self.algorithm.Time - timedelta(days=8) # Ensure weekly runs soon
        self.defensive_positions.clear()
        # Re-initialize indicators if needed (e.g., if algorithm restarted)
        self._initialize_indicators()
        # Trigger initial rebalance maybe? Or let the schedule handle it. Let schedule handle.
        self.algorithm.Log("Risk Control Module Activated. Waiting for scheduled rebalance.")


    def Deactivate(self):
        """Actions to take when this strategy becomes inactive."""
        self.algorithm.Log("Deactivating Risk Control Strategy Module")
        # Remove universe specific to Risk Control?
        # self.algorithm.RemoveUniverse(self._universe)
        # self._universe = None
        # Clear internal state
        self.selected_by_market_cap = []
        self.entry_prices.clear()
        # Liquidate positions held by this strategy? The main handler should do this.


    def CoarseSelectionFunction(self, coarse):
        # Use algorithm time
        # if self.algorithm.Time.hour == 9 and self.algorithm.Time.minute == 30:
        #      self.algorithm.Log(f"RiskControl Coarse Selection: {len(coarse)} symbols")
        filtered = [x for x in coarse if x.HasFundamentalData
                   and x.Price > 5
                   and x.Market == Market.USA]
        # Return only symbols needed for FineSelection, not all 500 like KQT
        return [x.Symbol for x in filtered]

    def FineSelectionFunction(self, fine):
        # Use algorithm time
        # if self.algorithm.Time.hour == 9 and self.algorithm.Time.minute == 30:
        #     self.algorithm.Log(f"RiskControl Fine Selection: {len(fine)} symbols")

        # Filter for large cap stocks for the equity portion
        filtered = [x for x in fine if x.MarketCap > 1e10
                   and x.SecurityReference.SecurityType == "ST00000001"] # Common Stock

        sorted_by_cap = sorted(filtered, key=lambda x: x.MarketCap, reverse=True)[:30] # Top 30 large caps
        self.selected_by_market_cap = [(x.Symbol, x.MarketCap) for x in sorted_by_cap]

        # Return symbols for the equity part + ensure defensive symbols are subscribed
        equity_symbols = [x.Symbol for x in sorted_by_cap]
        all_needed_symbols = set(equity_symbols + self.all_defensive + [self.spy, self.bil])

        return list(all_needed_symbols)

    def OnSecuritiesChanged(self, changes):
         # Only log if active?
         # if self.algorithm.is_risk_control_active:
         #      self.algorithm.Log(f"RiskControl OnSecuritiesChanged: Added {len(changes.AddedSecurities)}, Removed {len(changes.RemovedSecurities)}")
         # Handle removals if necessary, FineSelection should handle additions/updates for equity part
         for removed in changes.RemovedSecurities:
             # If a selected large-cap stock is removed, update the list
             self.selected_by_market_cap = [(s, mc) for s, mc in self.selected_by_market_cap if s != removed.Symbol]
             # If a defensive ETF is removed (unlikely), log warning
             if removed.Symbol in self.all_defensive:
                 self.algorithm.Log(f"Warning: Defensive ETF {removed.Symbol.Value} removed from universe.")
             # Liquidate if holding a removed equity position
             if self.algorithm.Portfolio[removed.Symbol].Invested and removed.Symbol not in self.risk_control_symbols:
                 self.algorithm.Log(f"RiskControl: Liquidating {removed.Symbol.Value} due to removal from universe.")
                 self.algorithm.Liquidate(removed.Symbol)


    def SetRebalanceFlag(self):
        # Only set flag if this strategy is active
        if not self.algorithm.is_risk_control_active: return
        # Original logic: Set flag on MonthStart, Rebalance on Wednesday after MonthStart
        # This seems slightly complex. Let's simplify: Rebalance on first Wednesday of month.
        # The MonthlyRebalance check `if not self.rebalance_flag: return` handles this.
        # Let's keep the original flag logic for now.
        if self.algorithm.Time.weekday() == 2: # Wednesday
            self.rebalance_flag = True
            self.algorithm.Log("RiskControl: Rebalance flag SET for Wednesday.")


    def OnData(self, data):
        # Only run if this strategy is active
        if not self.algorithm.is_risk_control_active: return

        # Update SPY price window and history
        if data.Bars.ContainsKey(self.spy):
            self.spy_30day_window.Add(data.Bars[self.spy].Close)
            self.spy_prices[self.algorithm.Time.date()] = data.Bars[self.spy].Close
            # Remove old prices
            dates_to_remove = [date for date in self.spy_prices if (self.algorithm.Time.date() - date).days > self.max_spy_history]
            for date in dates_to_remove: self.spy_prices.pop(date, None)
        else:
            return # Need SPY data for checks

        market_trend = self._calculateMarketTrend()
        stop_loss_triggered = False

        # Check stop-loss triggers
        # Iterate safely over portfolio copy
        for symbol, holding in list(self.algorithm.Portfolio.items()):
            if not holding.Invested or symbol == self.bil: continue # Skip cash-like BIL

            # Only manage stops for symbols relevant to this strategy?
            # Or manage all stops when active? Let's manage all non-BIL stops.
            # is_risk_control_asset = symbol in self.risk_control_symbols or symbol in [s for s, mc in self.selected_by_market_cap]
            # if not is_risk_control_asset: continue

            current_price = holding.Price
            if current_price <= 0: continue # Skip if price is invalid

            if symbol not in self.entry_prices:
                self.entry_prices[symbol] = holding.AveragePrice # Use average price if entry price not set

            entry_price = self.entry_prices.get(symbol, holding.AveragePrice)
            if entry_price <= 0: continue # Skip if entry price is invalid

            price_drop_pct = (entry_price - current_price) / entry_price

            # Calculate dynamic stop threshold
            stop_threshold = self.stop_loss_base
            if market_trend < -0.03: stop_threshold *= 0.9
            elif market_trend > 0.03: stop_threshold *= 1.1

            # Incorporate ATR
            if symbol in self.atr and self.atr[symbol].IsReady:
                current_atr = self.atr[symbol].Current.Value
                atr_pct = current_atr / current_price if current_price > 0 else 0
                effective_weight = self.dynamic_stop_weight
                if atr_pct > stop_threshold * 1.2: effective_weight = min(self.dynamic_stop_weight, 0.3)
                stop_threshold = ((1 - effective_weight) * stop_threshold + effective_weight * atr_pct)

            # Check stop loss condition (use percentage drop)
            if price_drop_pct >= stop_threshold:
                self.algorithm.Log(f"RiskControl Stop-loss triggered for {symbol.Value}: Drop {price_drop_pct*100:.1f}% >= Threshold {stop_threshold*100:.1f}%")
                self.algorithm.Liquidate(symbol, f"RiskControl Stop Loss {price_drop_pct*100:.1f}%")
                stop_loss_triggered = True
                if symbol in self.entry_prices: del self.entry_prices[symbol] # Remove entry price after stop

        # If stop-loss triggered, invest remaining cash in BIL
        if stop_loss_triggered:
            cash = self.algorithm.Portfolio.Cash
            if cash > 100: # Minimum amount to invest
                 bil_price = self.algorithm.Securities[self.bil].Price
                 if bil_price > 0:
                     bil_quantity = self.algorithm.CalculateOrderQuantity(self.bil, 1.0) # Allocate 100% of *available cash*
                     if bil_quantity != 0:
                          self.algorithm.MarketOrder(self.bil, bil_quantity, tag="RiskControl Post-StopLoss")
                          self.algorithm.Log(f"RiskControl: Invested remaining cash ({cash:.2f}) in BIL after stop-loss.")


    def WeeklyDefensiveAdjustment(self):
        # Only run if this strategy is active
        if not self.algorithm.is_risk_control_active: return

        self.algorithm.Log("RiskControl: Running Weekly Defensive Adjustment Check")

        # Skip if monthly rebalance just happened
        days_since_rebalance = (self.algorithm.Time.date() - self.last_rebalance_date.date()).days
        if days_since_rebalance < 3:
            self.algorithm.Log("RiskControl WeeklyDefensive: Skipping, too soon after monthly rebalance.")
            return

        # Skip if updated recently
        days_since_update = (self.algorithm.Time.date() - self.last_defensive_update.date()).days
        if days_since_update < 5:
            self.algorithm.Log("RiskControl WeeklyDefensive: Skipping, updated within the last 5 days.")
            return

        # Calculate market conditions
        if not self.spy_30day_window.IsReady or self.spy_30day_window.Count == 0:
             self.algorithm.Log("RiskControl WeeklyDefensive: SPY window not ready.")
             return
        spy_price = self.algorithm.Securities[self.spy].Price
        if spy_price <= 0: return
        sma_30 = sum(self.spy_30day_window) / self.spy_30day_window.Count
        market_deviation = (spy_price / sma_30) - 1.0 if sma_30 > 0 else 0
        market_trend = self._calculateMarketTrend()

        # Skip in strong bull markets
        if market_deviation > 0.04 and market_trend > 0.03:
            self.algorithm.Log("RiskControl WeeklyDefensive: Skipping, strong bull market conditions.")
            return

        # Calculate total portfolio value and current defensive allocation
        portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue
        if portfolio_value <= 0: return

        current_equity_value = sum(holding.HoldingsValue for symbol, holding in self.algorithm.Portfolio.items()
                                   if holding.Invested and symbol not in self.risk_control_symbols) # Equities not part of core defensive set
        current_defensive_etf_value = sum(holding.HoldingsValue for symbol, holding in self.algorithm.Portfolio.items()
                                          if holding.Invested and symbol in self.all_defensive)
        current_bil_value = self.algorithm.Portfolio[self.bil].HoldingsValue if self.algorithm.Portfolio[self.bil].Invested else 0

        total_invested_pct = (current_equity_value + current_defensive_etf_value + current_bil_value) / portfolio_value

        # Available room for *new* defensive positions (target max 98% invested)
        available_allocation_pct = max(0, 0.98 - total_invested_pct)

        # Potential allocation comes from reducing BIL or cash
        # Let's simplify: Max defensive allocation is a fixed % of portfolio, e.g., 25%
        max_total_defensive_pct = 0.25
        current_defensive_etf_pct = current_defensive_etf_value / portfolio_value

        # How much more can we allocate to defensive ETFs?
        potential_increase_pct = max(0, max_total_defensive_pct - current_defensive_etf_pct)
        # Limit by available cash/BIL reduction room
        potential_increase_pct = min(potential_increase_pct, available_allocation_pct)

        if self.diagnostic_mode:
            self.algorithm.Log(f"WEEKLY CHECK - Market: Dev {market_deviation*100:.2f}%, Trend {market_trend*100:.2f}%")
            self.algorithm.Log(f"Current Defensive ETF%: {current_defensive_etf_pct*100:.2f}%, Potential Increase%: {potential_increase_pct*100:.2f}%")
            if self.defensive_positions:
                 self.algorithm.Log(f"Current defensive positions: {[s.Value for s in self.defensive_positions]}")


        # Evaluate defensive ETFs based on potential increase
        new_target_allocations = self._evaluateDefensiveETFs(market_deviation, market_trend, potential_increase_pct) # Pass potential *increase*

        # Calculate changes needed
        changes_made = False
        current_defensive_holdings = {s: self.algorithm.Portfolio[s].HoldingsValue / portfolio_value
                                      for s in self.all_defensive if self.algorithm.Portfolio[s].Invested}

        # Add/Increase positions
        for symbol, target_increase_pct in new_target_allocations.items():
            if target_increase_pct > 0.01: # Minimum meaningful change
                current_pct = current_defensive_holdings.get(symbol, 0)
                new_target_total_pct = current_pct + target_increase_pct
                self.algorithm.Log(f"WeeklyDefensive: Setting {symbol.Value} to {new_target_total_pct*100:.2f}%")
                self.algorithm.SetHoldings(symbol, new_target_total_pct)
                self.defensive_positions.add(symbol) # Track holdings
                if symbol not in self.entry_prices: self.entry_prices[symbol] = self.algorithm.Securities[symbol].Price
                changes_made = True

        # Decrease/Remove positions (logic not in original _evaluateDefensiveETFs, needs adding or handle in MonthlyRebalance)
        # For now, weekly only adds/increases based on available room and positive eval. Monthly handles reduction.

        if changes_made:
            self.last_defensive_update = self.algorithm.Time


    def MonthlyRebalance(self):
        # --- ADDED GUARD AND LOG ---
        if not self.algorithm.is_risk_control_active:
            # self.algorithm.Debug("RC MonthlyRebalance skipped: Not active.") # Keep commented unless debugging activation
            return
        self.algorithm.Log(f"--> RC MonthlyRebalance STARTING on {self.algorithm.Time}. Active: {self.algorithm.is_risk_control_active}")
        # --- END GUARD AND LOG ---


        if not self.rebalance_flag:
            self.algorithm.Debug("RC MonthlyRebalance skipped: Rebalance flag not set.")
            return
        self.rebalance_flag = False
        self.entry_prices.clear()  # Reset entry prices at rebalance

        if not self.spy_30day_window.IsReady:
            self.algorithm.Log("RiskControl MonthlyRebalance: Waiting for SPY window.")
            return

        spy_price = self.algorithm.Securities[self.spy].Price
        if spy_price <= 0 or self.spy_30day_window.Count == 0: return
        sma_30 = sum(self.spy_30day_window) / self.spy_30day_window.Count

        market_deviation = (spy_price / sma_30) - 1.0 if sma_30 > 0 else 0
        market_trend = self._calculateMarketTrend()

        # BIL allocation logic (simplified for clarity, original logic was complex)
        bil_weight = 0.0
        if market_deviation < -0.01: # Below MA
            bil_weight = min(0.6, abs(market_deviation) * 5) # Scale up to 60% based on deviation
        elif market_deviation < 0.03: # Slightly above MA
             bil_weight = 0.1 # Small allocation
        # else: bil_weight = 0 in strong uptrend

        # Ensure minimum BIL based on previous month (original logic)
        # min_bil_allocation = self.previous_bil_allocation * 0.8 # Default 20% reduction allowed
        # if market_deviation > 0.05: min_bil_allocation = self.previous_bil_allocation * 0.7
        # elif market_deviation > 0.02: min_bil_allocation = self.previous_bil_allocation * 0.75
        # bil_weight = max(bil_weight, min_bil_allocation)

        # Cap BIL weight based on market condition (simplified)
        if market_deviation > 0.05: bil_weight = min(bil_weight, 0.15) # Cap 15%
        elif market_deviation > 0.0: bil_weight = min(bil_weight, 0.30) # Cap 30%
        else: bil_weight = min(bil_weight, 0.60) # Cap 60%

        # Determine allocation available for defensive ETFs (e.g., up to 40% of potential BIL)
        # Let's use a simpler approach: Allocate a fixed max % to defensive ETFs based on market
        max_defensive_etf_allocation = 0.0
        if market_deviation < -0.05: max_defensive_etf_allocation = 0.30 # Max 30% in strong downturn
        elif market_deviation < -0.01: max_defensive_etf_allocation = 0.20 # Max 20% in mild downturn
        elif market_deviation < 0.02: max_defensive_etf_allocation = 0.10 # Max 10% in neutral/weak uptrend

        # Evaluate defensive ETFs
        if self.diagnostic_mode: self._runDefensiveETFDiagnostics(market_deviation, market_trend)
        defensive_allocations = self._evaluateDefensiveETFs(market_deviation, market_trend, max_defensive_etf_allocation)
        total_defensive_allocation = sum(defensive_allocations.values())

        # Calculate remaining weight for equity portion
        equity_weight = 1.0 - bil_weight - total_defensive_allocation
        if equity_weight < 0: # Ensure non-negative equity weight
             scale_down = (1.0 - bil_weight) / total_defensive_allocation if total_defensive_allocation > 0 else 0
             total_defensive_allocation *= scale_down
             for s in defensive_allocations: defensive_allocations[s] *= scale_down
             equity_weight = 0
             self.algorithm.Log("RiskControl: Scaled down defensive ETFs, equity weight reached zero.")

        self.algorithm.Log(f"RiskControl Allocation: Equity {equity_weight*100:.1f}%, BIL {bil_weight*100:.1f}%, Defensive ETFs {total_defensive_allocation*100:.1f}%")

        # Select and weight equity portion (Top 30 large caps, market cap weighted)
        equity_weights = {}
        if equity_weight > 0 and self.selected_by_market_cap:
            # Apply momentum filter (optional, keep simple for now)
            # momentum_scores = self._calculateSimpleMomentum()
            # filtered_stocks = [(s, mc) for s, mc in self.selected_by_market_cap if momentum_scores.get(s, 1.0) >= 0.9]
            # if len(filtered_stocks) < 20: filtered_stocks = self.selected_by_market_cap # Revert if too few
            filtered_stocks = self.selected_by_market_cap # Use all selected

            total_market_cap = sum([mc for s, mc in filtered_stocks])
            if total_market_cap > 0:
                equity_weights = {s: (mc / total_market_cap) * equity_weight for s, mc in filtered_stocks}

        # --- Execute Trades ---
        portfolio_value = self.algorithm.Portfolio.TotalPortfolioValue
        traded_symbols = set()

        # Set Equity Positions
        for symbol, weight in equity_weights.items():
            if weight > 0.001: # Minimum weight
                self.algorithm.SetHoldings(symbol, weight)
                traded_symbols.add(symbol)
                self.entry_prices[symbol] = self.algorithm.Securities[symbol].Price

        # Set BIL Position
        if bil_weight > 0.001:
            self.algorithm.SetHoldings(self.bil, bil_weight)
            traded_symbols.add(self.bil)
        else:
            if self.algorithm.Portfolio[self.bil].Invested:
                 self.algorithm.Liquidate(self.bil, "RiskControl BIL Rebalance")

        # Set Defensive ETF Positions
        self.defensive_positions.clear() # Reset tracked defensive positions
        for symbol, weight in defensive_allocations.items():
            if weight > 0.001:
                self.algorithm.SetHoldings(symbol, weight)
                traded_symbols.add(symbol)
                self.defensive_positions.add(symbol) # Track active defensive holdings
                self.entry_prices[symbol] = self.algorithm.Securities[symbol].Price
                # self.algorithm.Log(f"RiskControl: Allocated {weight*100:.2f}% to defensive ETF {symbol.Value}")

        # Liquidate positions not targeted in this rebalance
        for symbol, holding in list(self.algorithm.Portfolio.items()):
            if holding.Invested and symbol not in traded_symbols:
                 # Check if it's an equity or defensive ETF that should be liquidated
                 is_equity = symbol in [s for s, mc in self.selected_by_market_cap]
                 is_defensive = symbol in self.all_defensive
                 if is_equity or is_defensive or symbol == self.bil: # Liquidate BIL if weight is 0
                      self.algorithm.Log(f"RiskControl: Liquidating {symbol.Value} (no longer targeted).")
                      self.algorithm.Liquidate(symbol, "RiskControl Monthly Rebalance")


        # Update trackers
        self.last_rebalance_date = self.algorithm.Time
        self.previous_bil_allocation = bil_weight # Store for potential future use

        self.algorithm.Log(f"--> RC MonthlyRebalance FINISHED on {self.algorithm.Time}.")


    def _calculateMarketTrend(self):
        """Calculate recent market trend using SPY price history"""
        if len(self.spy_prices) < self.trend_lookback + 1: return 0
        dates = sorted(self.spy_prices.keys())
        if len(dates) <= self.trend_lookback: return 0
        recent_price = self.spy_prices[dates[-1]]
        older_price = self.spy_prices[dates[-self.trend_lookback]]
        return (recent_price / older_price) - 1.0 if older_price > 0 else 0

    def _calculateSimpleMomentum(self):
        """Calculate simple momentum scores for stock filtering (Optional)"""
        momentum_scores = {}
        symbols = [sym for sym, _ in self.selected_by_market_cap]
        if not symbols: return momentum_scores

        history = self.algorithm.History(symbols, 30, Resolution.Daily)
        if history.empty: return momentum_scores

        for symbol in symbols:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                if len(prices) >= 30:
                    mom = prices.iloc[-1] / prices.iloc[0] - 1
                    momentum_scores[symbol] = min(1.3, max(0.7, 1 + (mom * 2)))
        return momentum_scores

    def _runDefensiveETFDiagnostics(self, market_deviation, market_trend):
        """Run detailed diagnostics on all defensive ETFs"""
        if not self.diagnostic_mode: return
        self.algorithm.Log("--- RiskControl Defensive ETF Diagnostics ---")
        symbols_to_request = self.all_defensive + [self.spy]
        history = self.algorithm.History(symbols_to_request, 90, Resolution.Daily)
        if history.empty:
            self.algorithm.Log("Diagnostics: History request failed.")
            return

        spy_perf = {}
        if self.spy in history.index.get_level_values(0):
            spy_prices = history.loc[self.spy]['close']
            if len(spy_prices) >= 30:
                spy_perf = {
                    "7d": spy_prices.iloc[-1] / spy_prices.iloc[-7] - 1 if len(spy_prices) >= 7 else 0,
                    "15d": spy_prices.iloc[-1] / spy_prices.iloc[-15] - 1 if len(spy_prices) >= 15 else 0,
                    "30d": spy_prices.iloc[-1] / spy_prices.iloc[-30] - 1
                }

        self.algorithm.Log(f"DIAGNOSTIC - Market: Dev {market_deviation*100:.2f}%, Trend {market_trend*100:.2f}%, SPY 30d: {spy_perf.get('30d', 0)*100:.2f}%")

        for symbol in self.all_defensive:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                if len(prices) >= 30:
                    perf_7d = prices.iloc[-1] / prices.iloc[-7] - 1 if len(prices) >= 7 else 0
                    perf_15d = prices.iloc[-1] / prices.iloc[-15] - 1 if len(prices) >= 15 else 0
                    perf_30d = prices.iloc[-1] / prices.iloc[-30] - 1
                    rel_30d = perf_30d - spy_perf.get('30d', 0)
                    self.algorithm.Log(f"  {symbol.Value}: 7d: {perf_7d*100:.2f}%, 15d: {perf_15d*100:.2f}%, 30d: {perf_30d*100:.2f}%, Rel30d: {rel_30d*100:.2f}%")
        self.algorithm.Log("--- End Diagnostics ---")


    def _evaluateDefensiveETFs(self, market_deviation, market_trend, max_total_allocation):
        """Enhanced defensive ETF evaluation with scoring"""
        allocations = {symbol: 0 for symbol in self.all_defensive}
        if max_total_allocation <= 0: return allocations # No room for defensive ETFs

        # Skip if market is very bullish
        if market_deviation > 0.04 and market_trend > 0.02:
            return allocations

        symbols_to_request = self.all_defensive + [self.spy]
        history = self.algorithm.History(symbols_to_request, 60, Resolution.Daily)
        if history.empty: return allocations

        spy_perf = {}
        if self.spy in history.index.get_level_values(0):
            spy_prices = history.loc[self.spy]['close']
            if len(spy_prices) >= 30:
                spy_perf = { # Use consistent periods
                    "5d": spy_prices.iloc[-1] / spy_prices.iloc[-5] - 1 if len(spy_prices) >= 5 else 0,
                    "10d": spy_prices.iloc[-1] / spy_prices.iloc[-10] - 1 if len(spy_prices) >= 10 else 0,
                    "20d": spy_prices.iloc[-1] / spy_prices.iloc[-20] - 1 if len(spy_prices) >= 20 else 0,
                    "30d": spy_prices.iloc[-1] / spy_prices.iloc[-30] - 1
                }

        etf_scores = {}
        for symbol in self.all_defensive:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                if len(prices) >= 30:
                    perf = {
                        "5d": prices.iloc[-1] / prices.iloc[-5] - 1 if len(prices) >= 5 else 0,
                        "10d": prices.iloc[-1] / prices.iloc[-10] - 1 if len(prices) >= 10 else 0,
                        "20d": prices.iloc[-1] / prices.iloc[-20] - 1 if len(prices) >= 20 else 0,
                        "30d": prices.iloc[-1] / prices.iloc[-30] - 1
                    }
                    rel_perf = {p: perf[p] - spy_perf.get(p, 0) for p in perf}

                    # Scoring logic (simplified example)
                    # Weight recent performance and relative performance
                    abs_score = (perf["5d"] * 0.4) + (perf["10d"] * 0.3) + (perf["20d"] * 0.2) + (perf["30d"] * 0.1)
                    rel_score = (rel_perf["5d"] * 0.4) + (rel_perf["10d"] * 0.3) + (rel_perf["20d"] * 0.2) + (rel_perf["30d"] * 0.1)

                    # Combine scores based on ETF type and market condition
                    score = 0
                    is_inverse = symbol in self.inverse_etfs
                    is_alternative = symbol in self.alternative_defensive
                    is_sector = symbol in self.sector_defensive

                    if market_deviation < -0.02: # Downtrend
                        if is_inverse: score = abs_score # Inverse should go up
                        elif is_alternative: score = (abs_score * 0.5) + (rel_score * 0.5) # Balance abs/rel
                        elif is_sector: score = (abs_score * 0.3) + (rel_score * 0.7) # Favor relative outperformance
                    else: # Neutral / Uptrend
                        if is_inverse: score = abs_score * 0.5 # Penalize inverse unless strongly positive
                        elif is_alternative: score = abs_score # Absolute return matters more
                        elif is_sector: score = (abs_score * 0.6) + (rel_score * 0.4) # Favor absolute

                    etf_scores[symbol] = score

        # Filter candidates with positive scores
        candidates = {s: score for s, score in etf_scores.items() if score > 0.001} # Small positive threshold
        if not candidates: return allocations

        # Sort candidates
        sorted_candidates = sorted(candidates.items(), key=lambda x: x[1], reverse=True)

        # Select top N candidates (e.g., top 2)
        num_etfs_to_select = min(2, len(sorted_candidates))
        selected_etfs = sorted_candidates[:num_etfs_to_select]

        # Allocate proportionally to score among selected ETFs
        total_score_selected = sum(score for _, score in selected_etfs)
        if total_score_selected > 0:
            for symbol, score in selected_etfs:
                weight = score / total_score_selected
                allocations[symbol] = max_total_allocation * weight
                # self.algorithm.Log(f"RiskControl EvalDefensive: Selected {symbol.Value}, Score: {score:.4f}, Alloc: {allocations[symbol]*100:.2f}%")

        return allocations

from AlgorithmImports import *
import numpy as np
from datetime import timedelta

class MarketCapWeightedSP500Tracker(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2019, 1, 1)
        self.SetEndDate(2025, 1, 1)
        self.SetCash(100000)

        self.UniverseSettings.Resolution = Resolution.Daily

        self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol
        self.bil = self.AddEquity("BIL", Resolution.Daily).Symbol

        self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)

        self.selected_by_market_cap = []
        self.rebalance_flag = False
        self.spy_30day_window = RollingWindow[float](30)
        self.entry_prices = {}
        self.previous_bil_allocation = 0.0

        self.Schedule.On(self.DateRules.MonthStart(self.spy), 
                        self.TimeRules.AfterMarketOpen(self.spy, 30), 
                        self.SetRebalanceFlag)
        self.Schedule.On(self.DateRules.WeekStart(self.spy, DayOfWeek.Wednesday), 
                        self.TimeRules.AfterMarketOpen(self.spy, 30), 
                        self.MonthlyRebalance)

        # Initialize rolling window with historical data
        history = self.History(self.spy, 30, Resolution.Daily)
        if not history.empty:
            for time, row in history.loc[self.spy].iterrows():
                self.spy_30day_window.Add(row["close"])

        # Add simple tracking of market trend
        self.trend_lookback = 10
        self.spy_prices = {}
        self.max_spy_history = 60  # Days of price history to keep
        
        # Add dynamic stop-loss enhancement
        self.stop_loss_base = 0.04  # Reduced base stop-loss threshold
        self.dynamic_stop_weight = 0.5  # Blend 50% ATR signal with base threshold

        # Expanded list of inverse and defensive ETFs
        # Original inverse ETFs
        self.sh = self.AddEquity("SH", Resolution.Daily).Symbol    # Inverse S&P 500
        self.psq = self.AddEquity("PSQ", Resolution.Daily).Symbol  # Inverse Nasdaq-100
        self.dog = self.AddEquity("DOG", Resolution.Daily).Symbol  # Inverse Dow Jones
        self.rwm = self.AddEquity("RWM", Resolution.Daily).Symbol  # Inverse Russell 2000
        self.eum = self.AddEquity("EUM", Resolution.Daily).Symbol  # Inverse Emerging Markets
        self.myd = self.AddEquity("MYY", Resolution.Daily).Symbol  # Inverse Mid-Cap 400
        
        # Alternative defensive ETFs (not inverse but potentially good in downturns)
        self.gld = self.AddEquity("GLD", Resolution.Daily).Symbol  # Gold
        self.ief = self.AddEquity("IEF", Resolution.Daily).Symbol  # 7-10 Year Treasury
        self.bnd = self.AddEquity("BND", Resolution.Daily).Symbol  # Total Bond Market
        
        # Sector-based defensive ETFs (often outperform in bear markets)
        self.xlp = self.AddEquity("XLP", Resolution.Daily).Symbol  # Consumer Staples
        self.xlu = self.AddEquity("XLU", Resolution.Daily).Symbol  # Utilities
        self.xlv = self.AddEquity("XLV", Resolution.Daily).Symbol  # Healthcare
        self.vht = self.AddEquity("VHT", Resolution.Daily).Symbol  # Vanguard Healthcare
        self.vdc = self.AddEquity("VDC", Resolution.Daily).Symbol  # Vanguard Consumer Staples
        
        # Group all defensive ETFs together
        self.inverse_etfs = [self.sh, self.psq, self.dog, self.rwm, self.eum, self.myd]
        self.alternative_defensive = [self.gld, self.ief, self.bnd]
        self.sector_defensive = [self.xlp, self.xlu, self.xlv, self.vht, self.vdc]
        self.all_defensive = self.inverse_etfs + self.alternative_defensive + self.sector_defensive
        
        # Add diagnostic logging capability
        self.diagnostic_mode = True  # Enable detailed diagnostics
        
        # Initialize positions tracking and add weekly tactical adjustment
        self.defensive_positions = set()
        self.last_defensive_update = datetime(1900, 1, 1)
        
        # Add weekly defensive ETF evaluation schedule
        self.Schedule.On(self.DateRules.WeekStart(self.spy, DayOfWeek.Monday), 
                       self.TimeRules.AfterMarketOpen(self.spy, 60),  # After main rebalance
                       self.WeeklyDefensiveAdjustment)

        # Initialize positions tracking
        self.inverse_positions = set()
        
        # Add inverse ETF lookback windows for better momentum calculation
        self.inverse_lookback_short = 7   # 1 week momentum window
        self.inverse_lookback_med = 15    # Medium-term momentum
        # Add ATR indicators for enhanced volatility-based stop-loss calculation
        self.atr_period = 14
        self.atr = {}
        # Register ATR for key symbols (defensive ETFs, BIL, and SPY)
        for symbol in self.all_defensive + [self.bil, self.spy]:
            self.atr[symbol] = self.ATR(symbol, self.atr_period, Resolution.Daily)
            
        # Initialize defensive strategy handler
        self.defensive_strategy = DefensiveStrategyHandler(self, {})
        self.defensive_strategy.Initialize()
            
    def CoarseSelectionFunction(self, coarse):
        filtered = [x for x in coarse if x.HasFundamentalData 
                   and x.Price > 5 
                   and x.Market == Market.USA]
        return [x.Symbol for x in filtered]

    def FineSelectionFunction(self, fine):
        filtered = [x for x in fine if x.MarketCap > 1e10
                   and x.SecurityReference.SecurityType == "ST00000001"]

        sorted_by_cap = sorted(filtered, key=lambda x: x.MarketCap, reverse=True)[:30]
        self.selected_by_market_cap = [(x.Symbol, x.MarketCap) for x in sorted_by_cap]
        return [x.Symbol for x in sorted_by_cap]

    def SetRebalanceFlag(self):
        if self.Time.weekday() == 2:  # Wednesday
            self.rebalance_flag = True

    def OnData(self, data):
        # Update price window
        if not data.Bars.ContainsKey(self.spy): return
        self.spy_30day_window.Add(data.Bars[self.spy].Close)
        
        # Track prices for trend calculation
        self.spy_prices[self.Time.date()] = data.Bars[self.spy].Close
        
        # Remove old prices
        dates_to_remove = []
        for date in self.spy_prices.keys():
            if (self.Time.date() - date).days > self.max_spy_history:
                dates_to_remove.append(date)
        for date in dates_to_remove:
            self.spy_prices.pop(date)
        
        market_trend = self._calculateMarketTrend()

        # Track if any stop-loss was triggered
        stop_loss_triggered = False
        
        # Check stop-loss triggers with improved dynamic thresholds
        for kvp in self.Portfolio:
            symbol = kvp.Key
            holding = kvp.Value

            if holding.Invested and symbol != self.bil:
                current_price = self.Securities[symbol].Price

                if symbol not in self.entry_prices:
                    self.entry_prices[symbol] = current_price

                price_drop = (self.entry_prices[symbol] - current_price) / self.entry_prices[symbol]

                # Start with the base threshold and adjust based on market trend
                stop_threshold = self.stop_loss_base
                if market_trend < -0.03:
                    stop_threshold *= 0.9  # tighten in downtrends
                elif market_trend > 0.03:
                    stop_threshold *= 1.1  # loosen in uptrends

                # Incorporate ATR if ready with adjustment to prevent overreaction in high volatility
                if symbol in self.atr and self.atr[symbol].IsReady:
                    current_atr = self.atr[symbol].Current.Value
                    atr_pct = current_atr / current_price
                    # If ATR is excessively high versus our base, use a lower weight to temper the effect
                    effective_weight = self.dynamic_stop_weight
                    if atr_pct > stop_threshold * 1.2:
                        effective_weight = min(self.dynamic_stop_weight, 0.3)
                    stop_threshold = ((1 - effective_weight) * stop_threshold +
                                      effective_weight * atr_pct)

                if price_drop >= stop_threshold:
                    self.Liquidate(symbol)
                    stop_loss_triggered = True
                    self.Debug(f"Stop-loss triggered for {symbol} at {current_price}, drop: {price_drop*100:.1f}%, threshold: {stop_threshold*100:.1f}%")
        # If any stop-loss was triggered, invest all available cash in BIL
        if stop_loss_triggered:
            available_cash = self.Portfolio.Cash + self.Portfolio.UnsettledCash
            if available_cash > 0:
                bil_price = self.Securities[self.bil].Price
                bil_quantity = available_cash / bil_price
                self.MarketOrder(self.bil, bil_quantity)
                self.Debug(f"Invested ${available_cash:0.2f} in BIL after stop-loss")
        
        # Call defensive strategy handler
        self.defensive_strategy.OnData(data)

    def WeeklyDefensiveAdjustment(self):
        """Weekly check and adjustment for defensive ETF positions"""
        # Skip if we've done the monthly rebalance recently
        days_since_rebalance = (self.Time.date() - self.last_rebalance_date.date()).days if hasattr(self, 'last_rebalance_date') else 999
        if days_since_rebalance < 3:
            return
            
        # Skip if we've updated defensive positions recently
        days_since_update = (self.Time.date() - self.last_defensive_update.date()).days
        if days_since_update < 5:  # At most once a week
            return
            
        # Calculate current market conditions
        spy_price = self.Securities[self.spy].Price
        sma_30 = sum(self.spy_30day_window) / self.spy_30day_window.Count if self.spy_30day_window.Count > 0 else spy_price
        market_deviation = (spy_price / sma_30) - 1.0
        market_trend = self._calculateMarketTrend()
        
        # Skip in strong bull markets
        if market_deviation > 0.04 and market_trend > 0.03:
            return
        
        # Calculate total invested amount including all positions
        total_invested = sum(holding.HoldingsValue for holding in self.Portfolio.Values 
                             if holding.Invested) / self.Portfolio.TotalPortfolioValue
        
        # If we're already fully invested, can't add more defensive positions
        if total_invested >= 0.98:  # Allow small buffer for rounding errors
            self.Debug(f"Already fully invested ({total_invested:.2f}), skipping defensive adjustments")
            return
            
        # Calculate available room for defensive positions
        available_allocation = max(0, 0.99 - total_invested)  # Keep tiny buffer
        
        # Calculate how much is currently allocated to defensive positions
        current_defensive_value = sum(self.Portfolio[s].HoldingsValue 
                                    for s in self.defensive_positions
                                    if self.Portfolio.ContainsKey(s) and self.Portfolio[s].Invested)
        
        # Calculate current BIL allocation
        current_bil_value = self.Portfolio[self.bil].HoldingsValue if self.Portfolio[self.bil].Invested else 0
        bil_allocation = current_bil_value / self.Portfolio.TotalPortfolioValue
        
        # Limit potential allocation to available room
        max_defensive_pct = min(0.25, available_allocation / bil_allocation if bil_allocation > 0 else 0)
        potential_allocation = bil_allocation * max_defensive_pct
        
        # Make sure we don't exceed available room
        potential_allocation = min(potential_allocation, available_allocation)
        
        # Super detailed diagnostics for current defensive positions
        if self.diagnostic_mode and self.defensive_positions:
            self.Debug(f"WEEKLY CHECK - Current defensive positions:")
            for symbol in self.defensive_positions:
                if self.Portfolio.ContainsKey(symbol) and self.Portfolio[symbol].Invested:
                    position = self.Portfolio[symbol]
                    entry = self.entry_prices.get(symbol, position.AveragePrice)
                    current = self.Securities[symbol].Price
                    pnl_pct = (current / entry) - 1 if entry > 0 else 0
                    self.Debug(f"  {symbol}: PnL {pnl_pct*100:.2f}%, Value ${position.HoldingsValue:.2f}")
        
        # Evaluate current defensive positions and potential new ones
        self.Debug(f"WEEKLY CHECK - Market: Dev {market_deviation*100:.2f}%, Trend {market_trend*100:.2f}%")
        self.Debug(f"BIL allocation: {bil_allocation*100:.2f}%, Potential defensive: {potential_allocation*100:.2f}%")
        
        # Run the defensive ETF evaluation
        new_allocations = self._evaluateDefensiveETFs(market_deviation, market_trend, potential_allocation)
        
        # Calculate which positions to add, modify, or remove
        positions_to_add = {}
        positions_to_remove = set()
        
        # Process existing positions
        for symbol in self.defensive_positions:
            # If position should be kept but maybe at different allocation
            if symbol in new_allocations and new_allocations[symbol] > 0:
                current_pct = self.Portfolio[symbol].HoldingsValue / self.Portfolio.TotalPortfolioValue if self.Portfolio.ContainsKey(symbol) else 0
                target_pct = new_allocations[symbol]
                
                # If allocation difference is significant, adjust position
                if abs(target_pct - current_pct) > 0.01:
                    positions_to_add[symbol] = target_pct
                
                # Remove from new allocations dict to avoid double-processing
                new_allocations.pop(symbol)
            else:
                # Position should be removed
                positions_to_remove.add(symbol)
        
        # Add any remaining new positions
        for symbol, allocation in new_allocations.items():
            if allocation > 0.01:  # Minimum meaningful allocation
                positions_to_add[symbol] = allocation
        
        # Check if we'll exceed our allocation limits with new positions
        total_new_allocation = sum(positions_to_add.values())
        if total_new_allocation > available_allocation:
            # Scale back allocations to fit available space
            scale_factor = available_allocation / total_new_allocation
            for symbol in positions_to_add:
                positions_to_add[symbol] *= scale_factor
            self.Debug(f"Scaled defensive allocations to fit available space: {scale_factor:.4f}")
        
        # Execute trades if needed
        if positions_to_add or positions_to_remove:
            self.Debug(f"WEEKLY ADJUSTMENT - Making defensive position changes")
            
            # Remove positions no longer needed
            for symbol in positions_to_remove:
                self.Liquidate(symbol)
                self.defensive_positions.remove(symbol)
                self.Debug(f"Removed defensive position: {symbol}")
            
            # Add or adjust positions
            for symbol, allocation in positions_to_add.items():
                self.SetHoldings(symbol, allocation)
                self.defensive_positions.add(symbol)
                self.entry_prices[symbol] = self.Securities[symbol].Price
                self.Debug(f"Updated defensive position: {symbol} to {allocation*100:.2f}%")
            
            self.last_defensive_update = self.Time

    def MonthlyRebalance(self):
        if not self.rebalance_flag: return
        self.rebalance_flag = False
        self.entry_prices.clear()  # Reset entry prices at rebalance

        if self.spy_30day_window.Count < 30:
            self.Debug("Waiting for enough SPY history.")
            return

        spy_price = self.Securities[self.spy].Price
        sma_30 = sum(self.spy_30day_window) / 30

        # Calculate market deviation for better decisions
        market_deviation = (spy_price / sma_30) - 1.0
        market_trend = self._calculateMarketTrend()
        
        # Enhanced BIL allocation logic with lower caps
        bil_weight = 0.0
        if spy_price < sma_30:
            # Enhanced formula for better downside protection
            base_weight = (sma_30 - spy_price) / sma_30
            
            if base_weight > 0.08:  # Significant drop
                # Lower cap on BIL for significant drops
                bil_weight = min(base_weight * 1.1, 0.7)  # Cap at 70% (was 90%)
            else:
                bil_weight = min(base_weight, 0.6)  # Cap at 60% (was 80%)
        
        # Enhanced reduction rule for better returns in bull markets
        if market_deviation > 0.05:  # Strong bull market
            min_bil_allocation = self.previous_bil_allocation * 0.7  # 30% reduction
        elif market_deviation > 0.02:  # Modest bull market
            min_bil_allocation = self.previous_bil_allocation * 0.75  # 25% reduction
        else:
            min_bil_allocation = self.previous_bil_allocation * 0.8  # Standard 20% reduction
            
        bil_weight = max(bil_weight, min_bil_allocation)
        
        # Lower caps on BIL in all market conditions
        if market_deviation > 0.08:  # Very strong bull
            bil_weight = min(bil_weight, 0.15)  # Cap at 15% (was 20%)
        elif market_deviation > 0.05:  # Strong bull
            bil_weight = min(bil_weight, 0.25)  # Cap at 25% (was 30%)
        elif market_deviation > 0.0:   # Mild bull
            bil_weight = min(bil_weight, 0.4)   # Cap at 40% (new tier)
        elif market_deviation > -0.03: # Neutral
            bil_weight = min(bil_weight, 0.5)   # Cap at 50% (new tier)
        else:                          # Bear
            bil_weight = min(bil_weight, 0.6)   # Cap at 60% (new tier)
            
        # Calculate how much of the original BIL allocation to potentially use for inverse ETFs
        original_bil = bil_weight
        # Use only a portion of BIL for inverse ETFs, keeping some as BIL
        inverse_etf_potential = original_bil * 0.4  # Use 40% of BIL allocation for inverse ETFs
        bil_weight = original_bil - inverse_etf_potential
        
        # Run diagnostics on defensive ETFs
        if self.diagnostic_mode:
            self._runDefensiveETFDiagnostics(market_deviation, market_trend)
        
        # Evaluate inverse ETFs for possible allocation
        inverse_allocations = self._evaluateInverseETFs(market_deviation, market_trend, inverse_etf_potential)
        
        # Include alternative defensive ETFs in evaluation
        all_defensive_allocations = self._evaluateDefensiveETFs(market_deviation, market_trend, inverse_etf_potential)
        
        # Calculate total allocation to defensive ETFs
        total_defensive_allocation = sum(all_defensive_allocations.values())
        
        # Set aside remainder as cash (won't be allocated)
        cash_reserve = inverse_etf_potential - total_defensive_allocation
        
        # Calculate weight for equity portion
        equity_weight = 1.0 - total_defensive_allocation
        
        # Ensure total allocation never exceeds 100%
        total_allocation = bil_weight + total_defensive_allocation + equity_weight
        if total_allocation > 1.0:
            # Scale back components proportionally
            scale_factor = 1.0 / total_allocation
            bil_weight *= scale_factor
            equity_weight *= scale_factor
            # Scale each defensive allocation
            for symbol in all_defensive_allocations:
                all_defensive_allocations[symbol] *= scale_factor
            
            total_defensive_allocation = sum(all_defensive_allocations.values())
            self.Debug(f"Scaled allocations to prevent leverage: {scale_factor:.4f}")
        
        self.Debug(f"Allocation breakdown: Equity {equity_weight*100:.1f}%, BIL {bil_weight*100:.1f}%, " +
                  f"Defensive ETFs {total_defensive_allocation*100:.1f}%, Cash {cash_reserve*100:.1f}%")

        # Enhance stock selection with simple momentum filter
        momentum_scores = self._calculateSimpleMomentum()
        
        # Filter out worst momentum stocks
        filtered_stocks = []
        for symbol, mcap in self.selected_by_market_cap:
            score = momentum_scores.get(symbol, 1.0)
            if score >= 0.9:  # Keep only neutral or positive momentum stocks
                filtered_stocks.append((symbol, mcap))
        
        # If we filtered too many, revert to original list
        if len(filtered_stocks) < 20:
            filtered_stocks = self.selected_by_market_cap
        
        # Calculate weights using the filtered stocks
        total_market_cap = sum([x[1] for x in filtered_stocks])
        weights = {x[0]: (x[1] / total_market_cap) * equity_weight for x in filtered_stocks}

        invested = set()
        for symbol, weight in weights.items():
            if weight > 0:
                self.SetHoldings(symbol, weight)
                invested.add(symbol)
                self.entry_prices[symbol] = self.Securities[symbol].Price

        # Set BIL position
        if bil_weight > 0:
            self.SetHoldings(self.bil, bil_weight)
            invested.add(self.bil)
        else:
            self.Liquidate(self.bil)
            
        # Set defensive ETF positions
        for symbol, weight in all_defensive_allocations.items():
            if weight > 0:
                self.SetHoldings(symbol, weight)
                invested.add(symbol)
                self.defensive_positions.add(symbol)  # Using renamed set
                self.entry_prices[symbol] = self.Securities[symbol].Price
                self.Debug(f"Allocated {weight*100:.2f}% to defensive ETF {symbol}")
            elif symbol in self.defensive_positions:
                self.Liquidate(symbol)
                self.defensive_positions.remove(symbol)
                
        # Update last rebalance date tracker
        self.last_rebalance_date = self.Time

        # Store current BIL allocation for next month's minimum
        self.previous_bil_allocation = self.Portfolio[self.bil].HoldingsValue / self.Portfolio.TotalPortfolioValue
        self.Debug(f"New BIL allocation: {bil_weight*100:0.2f}% (Minimum was {min_bil_allocation*100:0.2f}%)")

        # Liquidate positions not in current selection
        for kvp in self.Portfolio:
            symbol = kvp.Key
            if (kvp.Value.Invested and symbol not in invested 
                and symbol != self.spy and symbol not in self.defensive_positions):
                self.Liquidate(symbol)

    def _calculateMarketTrend(self):
        """Calculate recent market trend using price history"""
        if len(self.spy_prices) < self.trend_lookback + 1:
            return 0  # Not enough data
            
        dates = sorted(self.spy_prices.keys())
        if len(dates) <= self.trend_lookback:
            return 0
            
        recent_price = self.spy_prices[dates[-1]]
        older_price = self.spy_prices[dates[-self.trend_lookback]]
        
        return (recent_price / older_price) - 1.0

    def _calculateSimpleMomentum(self):
        """Calculate simple momentum scores for stock filtering"""
        momentum_scores = {}
        
        symbols = [sym for sym, _ in self.selected_by_market_cap]
        if not symbols:
            return momentum_scores
            
        # Get 30 days of history for all stocks
        history = self.History(symbols, 30, Resolution.Daily)
        if history.empty:
            return momentum_scores
            
        # Calculate simple momentum (30-day price change)
        for symbol in symbols:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                
                if len(prices) >= 30:
                    # 30-day momentum
                    mom = prices.iloc[-1] / prices.iloc[0] - 1
                    
                    # Convert to a score between 0.7 and 1.3
                    # Center around 1.0, with range based on 15% move
                    momentum_scores[symbol] = min(1.3, max(0.7, 1 + (mom * 2)))
        
        return momentum_scores

    def _evaluateInverseETFs(self, market_deviation, market_trend, max_allocation):
        """Enhanced evaluation of inverse ETFs with more sensitive criteria"""
        allocations = {symbol: 0 for symbol in self.inverse_etfs}
        
        # More permissive consideration of inverse ETFs
        if market_deviation > 0.04 and market_trend > 0.02:
            return allocations  # Only skip in very strong bull markets
        
        # Get more history for better momentum calculation
        history = self.History(self.inverse_etfs, 45, Resolution.Daily)
        if history.empty:
            return allocations
        
        # Enhanced momentum scoring
        momentum_scores = {}
        volatility_scores = {}
        
        for symbol in self.inverse_etfs:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                
                if len(prices) >= 30:
                    # Multiple timeframe momentum - more emphasis on recent performance
                    mom_7d = prices.iloc[-1] / prices.iloc[-7] - 1 if len(prices) >= 7 else 0
                    mom_15d = prices.iloc[-1] / prices.iloc[-15] - 1 if len(prices) >= 15 else 0
                    mom_30d = prices.iloc[-1] / prices.iloc[0] - 1
                    
                    # Weight recent momentum much more heavily
                    momentum = (mom_7d * 0.5) + (mom_15d * 0.3) + (mom_30d * 0.2)
                    
                    # Calculate volatility (lower is better for inverse ETFs)
                    returns = [prices.iloc[i+1]/prices.iloc[i]-1 for i in range(min(20, len(prices)-1))]
                    volatility = np.std(returns) if returns else 0
                    
                    # Calculate short-term rate of change (acceleration)
                    if len(prices) >= 10:
                        recent_5d_change = prices.iloc[-1] / prices.iloc[-5] - 1
                        prev_5d_change = prices.iloc[-6] / prices.iloc[-10] - 1
                        acceleration = recent_5d_change - prev_5d_change
                    else:
                        acceleration = 0
                    
                    # Momentum score adds weight for accelerating performance
                    momentum_scores[symbol] = momentum + (acceleration * 0.5)
                    volatility_scores[symbol] = volatility
        
        # More aggressive filtering - consider even small positive momentum
        positive_momentum_etfs = {s: score for s, score in momentum_scores.items() if score > -0.005}
        
        # No allocation if no ETFs have at least neutral momentum
        if not positive_momentum_etfs:
            self.Debug("No inverse ETFs showing acceptable momentum - keeping as cash")
            return allocations
            
        # Enhanced selection: favor momentum but consider volatility too
        best_candidates = []
        for symbol, score in positive_momentum_etfs.items():
            volatility = volatility_scores.get(symbol, 1.0)
            # Adjust score: higher momentum is good, lower volatility is good
            adjusted_score = score - (volatility * 0.5)  
            best_candidates.append((symbol, score, adjusted_score))
        
        # Sort by adjusted score
        best_candidates.sort(key=lambda x: x[2], reverse=True)
        
        # More aggressive allocation model
        allocation_pct = 0.0
        
        # Allocate based on market conditions with more sensitivity
        if market_deviation < -0.05:
            allocation_pct = 1.0  # Use 100% of available inverse allocation
        elif market_deviation < -0.03:
            allocation_pct = 0.8  # Use 80% of available inverse allocation
        elif market_deviation < -0.01:
            allocation_pct = 0.6  # Use 60% of available inverse allocation
        elif market_deviation < 0.01:  # Even in slight bull market if momentum is positive
            allocation_pct = 0.4  # Use 40% of available inverse allocation
        else:
            allocation_pct = 0.2  # Use 20% only if momentum is strong enough
        
        # No candidates or market conditions don't justify allocation
        if not best_candidates or allocation_pct < 0.1:
            return allocations
            
        # Take top 1-2 ETFs depending on market conditions
        num_etfs = 1
        if market_deviation < -0.04 and len(best_candidates) > 1:
            num_etfs = 2  # Use two ETFs in stronger downtrends
            
        # Allocate to best ETF(s)
        remaining_allocation = max_allocation * allocation_pct
        
        for i in range(min(num_etfs, len(best_candidates))):
            symbol, raw_score, _ = best_candidates[i]
            
            # Allocate proportionally to momentum strength, with a minimum threshold
            etf_weight = min(1.0, max(0.3, raw_score * 3)) if raw_score > 0 else 0.3
            
            # Calculate allocation for this ETF
            etf_allocation = remaining_allocation * etf_weight / num_etfs
            
            # Only allocate if it's a meaningful amount
            if etf_allocation >= 0.01:  # At least 1% allocation
                allocations[symbol] = etf_allocation
                self.Debug(f"Selected inverse ETF {symbol} with momentum {raw_score:.2%}, allocating {etf_allocation*100:.2f}%")
                
        return allocations

    def _runDefensiveETFDiagnostics(self, market_deviation, market_trend):
        """Run detailed diagnostics on all defensive ETFs"""
        # Get extensive history for analysis
        history = self.History(self.all_defensive + [self.spy], 90, Resolution.Daily)
        if history.empty:
            return
            
        spy_perf = {}
        if self.spy in history.index.get_level_values(0):
            spy_prices = history.loc[self.spy]['close']
            if len(spy_prices) >= 30:
                spy_perf = {
                    "7d": spy_prices.iloc[-1] / spy_prices.iloc[-7] - 1 if len(spy_prices) >= 7 else 0,
                    "15d": spy_prices.iloc[-1] / spy_prices.iloc[-15] - 1 if len(spy_prices) >= 15 else 0,
                    "30d": spy_prices.iloc[-1] / spy_prices.iloc[-30] - 1
                }
        
        # Log market conditions
        self.Debug(f"DIAGNOSTIC - Market: Deviation {market_deviation*100:.2f}%, " + 
                  f"Trend {market_trend*100:.2f}%, SPY 30d: {spy_perf.get('30d', 0)*100:.2f}%")
        
        # Analyze each ETF
        for symbol in self.all_defensive:
            if symbol in history.index.get_level_values(0):
                prices = history.loc[symbol]['close']
                
                if len(prices) >= 30:
                    # Calculate multiple timeframe performance
                    perf_7d = prices.iloc[-1] / prices.iloc[-7] - 1 if len(prices) >= 7 else 0
                    perf_15d = prices.iloc[-1] / prices.iloc[-15] - 1 if len(prices) >= 15 else 0
                    perf_30d = prices.iloc[-1] / prices.iloc[-30] - 1
                    
                    # Calculate recent acceleration
                    recent_5d = prices.iloc[-1] / prices.iloc[-5] - 1 if len(prices) >= 5 else 0
                    prev_5d = prices.iloc[-6] / prices.iloc[-10] - 1 if len(prices) >= 10 else 0
                    accel = recent_5d - prev_5d
                    
                    # Calculate relative performance vs SPY
                    rel_perf = {}
                    for period, spy_val in spy_perf.items():
                        if period == "7d":
                            rel_perf[period] = perf_7d - spy_val
                        elif period == "15d":
                            rel_perf[period] = perf_15d - spy_val
                        elif period == "30d":
                            rel_perf[period] = perf_30d - spy_val
                    
                    # Log detailed ETF statistics
                    self.Debug(f"  {symbol}: 7d: {perf_7d*100:.2f}%, 15d: {perf_15d*100:.2f}%, " +
                              f"30d: {perf_30d*100:.2f}%, Accel: {accel*100:.2f}%, " +
                              f"Rel30d: {rel_perf.get('30d', 0)*100:.2f}%")

    def _evaluateDefensiveETFs(self, market_deviation, market_trend, max_allocation):
        """Enhanced defensive ETF evaluation with sector rotation"""
        allocations = {symbol: 0 for symbol in self.all_defensive}
        
        # Skip if market is very bullish
        if market_deviation > 0.04 and market_trend > 0.02:
            return allocations
            
        # Get history for all defensive options and SPY
        history = self.History(self.all_defensive + [self.spy], 60, Resolution.Daily)
        if history.empty:
            return allocations
            
        # Detailed diagnostics on all ETFs
        self.Debug(f"DEFENSIVE ETF PERFORMANCE DETAILS:")
        
        # Calculate SPY performance for relative comparisons
        spy_perf = {}
        if self.spy in history.index.get_level_values(0):
            spy_prices = history.loc[self.spy]['close']
            if len(spy_prices) >= 30:
                spy_perf = {
                    "5d": spy_prices.iloc[-1] / spy_prices.iloc[-5] - 1 if len(spy_prices) >= 5 else 0,
                    "10d": spy_prices.iloc[-1] / spy_prices.iloc[-10] - 1 if len(spy_prices) >= 10 else 0,
                    "20d": spy_prices.iloc[-1] / spy_prices.iloc[-20] - 1 if len(spy_prices) >= 20 else 0,
                    "30d": spy_prices.iloc[-1] / spy_prices.iloc[-30] - 1
                }
                self.Debug(f"  SPY: 5d: {spy_perf['5d']*100:.1f}%, 10d: {spy_perf['10d']*100:.1f}%, " +
                           f"20d: {spy_perf['20d']*100:.1f}%, 30d: {spy_perf['30d']*100:.1f}%")
                
        # Enhanced scoring system with different criteria for different ETF types
        etf_scores = {}
        
        # Process each ETF by type
        for group_name, group in [("Inverse", self.inverse_etfs), 
                                 ("Alternative", self.alternative_defensive),
                                 ("Sector", self.sector_defensive)]:
            self.Debug(f"  {group_name} ETFs:")
            
            for symbol in group:
                if symbol in history.index.get_level_values(0):
                    prices = history.loc[symbol]['close']
                    
                    if len(prices) >= 30:
                        # Calculate absolute momentum components
                        perf = {}
                        perf["5d"] = prices.iloc[-1] / prices.iloc[-5] - 1 if len(prices) >= 5 else 0
                        perf["10d"] = prices.iloc[-1] / prices.iloc[-10] - 1 if len(prices) >= 10 else 0
                        perf["20d"] = prices.iloc[-1] / prices.iloc[-20] - 1 if len(prices) >= 20 else 0
                        perf["30d"] = prices.iloc[-1] / prices.iloc[-30] - 1
                        
                        # Calculate relative outperformance vs SPY
                        rel_perf = {}
                        for period, spy_val in spy_perf.items():
                            rel_perf[period] = perf[period] - spy_val
                        
                        # Log detailed performance
                        self.Debug(f"    {symbol}: 5d: {perf['5d']*100:.1f}% (rel: {rel_perf['5d']*100:+.1f}%), " +
                                 f"10d: {perf['10d']*100:.1f}% (rel: {rel_perf['10d']*100:+.1f}%), " +
                                 f"30d: {perf['30d']*100:.1f}% (rel: {rel_perf['30d']*100:+.1f}%)")
                        
                        # Inverse ETFs need to show positive momentum in down markets
                        if symbol in self.inverse_etfs:
                            # In downtrends, rising inverse ETFs are good
                            if market_deviation < -0.02:
                                score = (perf["5d"] * 0.4) + (perf["10d"] * 0.4) + (perf["30d"] * 0.2)
                                # Bonus for relative outperformance
                                score += (rel_perf["5d"] + rel_perf["10d"]) * 0.15
                            else:
                                # Less emphasis on long-term performance in neutral markets
                                score = (perf["5d"] * 0.6) + (perf["10d"] * 0.3) + (perf["30d"] * 0.1)
                                
                        # Alternative defensive (bonds, gold) - focus on absolute return
                        elif symbol in self.alternative_defensive:
                            # Less dramatic movements, need lower thresholds
                            score = (perf["5d"] * 0.3) + (perf["10d"] * 0.4) + (perf["30d"] * 0.3)
                            
                            # In downtrends, emphasize relative performance more
                            if market_deviation < -0.03:
                                score += rel_perf["10d"] * 0.2  # Bonus for outperformance
                                
                        # Sector ETFs - focus on relative outperformance
                        else:
                            # These should have positive absolute returns and outperform SPY
                            abs_score = (perf["5d"] * 0.3) + (perf["10d"] * 0.3) + (perf["30d"] * 0.4)
                            rel_score = (rel_perf["5d"] * 0.3) + (rel_perf["10d"] * 0.3) + (rel_perf["30d"] * 0.4)
                            
                            # Balance absolute and relative performance
                            if market_deviation < -0.02:
                                # In downtrends, relative outperformance is more important
                                score = (abs_score * 0.4) + (rel_score * 0.6)
                            else:
                                # In neutral markets, absolute performance matters more
                                score = (abs_score * 0.6) + (rel_score * 0.4)
                                
                        etf_scores[symbol] = score
        
        # Find candidates with appropriate momentum based on market conditions
        threshold = -0.007  # Default threshold
        if market_deviation < -0.03:
            threshold = -0.01  # More permissive in stronger downturns
            
        candidates = {s: score for s, score in etf_scores.items() if score > threshold}
        
        if not candidates:
            self.Debug("No defensive ETFs showed sufficient momentum - keeping as cash")
            return allocations
            
        # Sort and log candidate scores
        sorted_candidates = sorted(candidates.items(), key=lambda x: x[1], reverse=True)
        self.Debug(f"Top 5 defensive candidates:")
        for symbol, score in sorted_candidates[:5]:
            group = "Inverse" if symbol in self.inverse_etfs else "Alternative" if symbol in self.alternative_defensive else "Sector"
            self.Debug(f"  {symbol} ({group}): Score {score*100:.2f}%")
        
        # Set allocation percent based on market conditions and trend
        allocation_pct = 0.0
        if market_deviation < -0.05 or market_trend < -0.04:
            allocation_pct = 0.95  # Almost all available allocation
        elif market_deviation < -0.03 or market_trend < -0.02:
            allocation_pct = 0.8
        elif market_deviation < -0.01 or market_trend < -0.01:
            allocation_pct = 0.6
        else:
            allocation_pct = 0.4
            
        # Adjust allocation based on strength of best candidate
        best_score = sorted_candidates[0][1] if sorted_candidates else 0
        allocation_pct *= min(1.0, max(0.5, (best_score + 0.02) * 4))
            
        # Determine number of ETFs to use - more in stronger downtrends
        num_etfs = 1
        if (market_deviation < -0.04 or market_trend < -0.03) and len(sorted_candidates) > 1:
            num_etfs = min(2, len(sorted_candidates))
        
        # Allocate to best candidates
        remaining_allocation = max_allocation * allocation_pct
        total_score = sum(score for _, score in sorted_candidates[:num_etfs])
        
        if total_score > 0:
            for i in range(num_etfs):
                symbol, score = sorted_candidates[i]
                
                # Weight by relative score
                weight = score / total_score if total_score > 0 else 1.0/num_etfs
                
                # Calculate allocation
                etf_allocation = remaining_allocation * weight
                
                # Only allocate if meaningful
                if etf_allocation >= 0.02:  # 2% minimum allocation
                    allocations[symbol] = etf_allocation
                    etf_type = "Inverse" if symbol in self.inverse_etfs else "Alternative" if symbol in self.alternative_defensive else "Sector"
                    self.Debug(f"Selected {etf_type} ETF {symbol} with score {score*100:.2f}%, allocating {etf_allocation*100:.2f}%")
                
        return allocations

class DefensiveStrategyHandler:
    def __init__(self, algorithm, config):
        self.algo = algorithm
        self.bnd = None
        self.defensive_positions = set()
        self.atr = {}
        self.stop_loss_base = 0.04
        self.dynamic_stop_weight = 0.5
        self.tickers = []  # Initialize tickers as an empty list

    def Initialize(self):
        self.bnd = self.algo.AddEquity("BND", Resolution.Daily).Symbol
        self.atr[self.bnd] = self.algo.ATR(self.bnd, 14, Resolution.Daily)

    def OnData(self, data):
        self.algo.Debug("DefensiveStrategyHandler: Processing OnData.")
        if not self.tickers:
            self.algo.Debug("DefensiveStrategyHandler: No tickers to process.")
            return

        self.CheckStopLosses()
        self.AdjustDefensivePositions()
        self.algo.Debug("DefensiveStrategyHandler: Adjusted defensive positions.")

    def CheckStopLosses(self):
        for symbol in self.defensive_positions:
            holding = self.algo.Portfolio[symbol]
            if holding.Invested:
                current_price = self.algo.Securities[symbol].Price
                entry_price = holding.AveragePrice
                price_drop = (entry_price - current_price) / entry_price
                stop_threshold = self.stop_loss_base
                if symbol in self.atr and self.atr[symbol].IsReady:
                    atr_value = self.atr[symbol].Current.Value
                    atr_pct = atr_value / current_price
                    stop_threshold = ((1 - self.dynamic_stop_weight) * stop_threshold +
                                      self.dynamic_stop_weight * atr_pct)
                if price_drop >= stop_threshold:
                    self.algo.Liquidate(symbol)

    def AdjustDefensivePositions(self):
        if not self.algo.Portfolio[self.bnd].Invested:
            self.algo.SetHoldings(self.bnd, 0.8)

    def GetManagedSymbols(self):
        return [self.bnd]

    def OnSwitchOut(self):
        self.algo.Debug("DefensiveStrategyHandler: Switched out.")
        for symbol in self.GetManagedSymbols():
            self.algo.Liquidate(symbol)
        self.tickers.clear()
        self.algo.Debug("DefensiveStrategyHandler: Liquidated positions and cleared tickers.")

    def OnSwitchIn(self):
        self.algo.Debug("DefensiveStrategyHandler: Switched in.")
        self.tickers.clear()  # Clear tickers to ensure fresh start
        self.algo.Debug("DefensiveStrategyHandler: Cleared tickers.")
# region imports
from AlgorithmImports import *
# endregion
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from QuantConnect.Indicators import *
from datetime import timedelta
import numpy as np
import pandas as pd
from sklearn.preprocessing import RobustScaler


class KQTStrategy:
    def __init__(self):
        self.lookback = 30
        self.scalers = {}
        self.feature_cols = []
        self.stock_to_id = {}
        self.sector_mappings = {}

        self.adaptive_threshold = 0.1
        self.pred_std = 1.0
        self.current_regime = "neutral"
        self.portfolio_returns = []
        self.defensive_mode = False
        self.previous_day_hit_stops = []
        self.algorithm = None

    def calculate_portfolio_risk_score(self, market_returns):
        """Calculate a portfolio risk score (0-100) to scale overall exposure"""
        risk_score = 50  # Neutral starting point
        
        # VIX-like volatility measurement using SPY returns
        if len(market_returns) >= 5:
            recent_vol = np.std(market_returns[-5:]) * np.sqrt(252)  # Annualized
            longer_vol = np.std(market_returns[-10:]) * np.sqrt(252) if len(market_returns) >= 10 else recent_vol
            
            # Volatility spike detection
            vol_ratio = recent_vol / longer_vol if longer_vol > 0 else 1
            if vol_ratio > 1.5:  # Sharp volatility increase
                risk_score -= 30
            elif vol_ratio > 1.2:
                risk_score -= 15
                
        # Consecutive negative days
        if len(market_returns) >= 3:
            neg_days = sum(1 for r in market_returns[-3:] if r < 0)
            if neg_days == 3:  # Three consecutive down days
                risk_score -= 20
            elif neg_days == 2:
                risk_score -= 10
                
        # Trend direction
        if len(market_returns) >= 10:
            avg_recent = np.mean(market_returns[-5:])
            avg_older = np.mean(market_returns[-10:-5])
            trend_change = avg_recent - avg_older
            
            # Declining trend
            if trend_change < -0.3:
                risk_score -= 15
            # Accelerating uptrend
            elif trend_change > 0.3 and avg_recent > 0:
                risk_score += 10
                
        return max(10, min(100, risk_score))  # Constrain between 10-100

    def detect_market_regime(self, daily_returns, lookback=10):
        """Detect current market regime based on portfolio returns"""
        if len(daily_returns) >= 1:
            market_return = np.mean(daily_returns)
            market_vol = np.std(daily_returns)
            
            if len(self.portfolio_returns) >= 3:
                recent_returns = self.portfolio_returns[-min(lookback, len(self.portfolio_returns)):]
                avg_recent_return = np.mean(recent_returns)
                
                if len(self.portfolio_returns) >= 5:
                    very_recent = np.mean(self.portfolio_returns[-3:])
                    less_recent = np.mean(self.portfolio_returns[-min(8, len(self.portfolio_returns)):-3])
                    trend_change = very_recent - less_recent
                    
                    if trend_change > 0.5 and avg_recent_return > 0.2:
                        return "breakout_bullish"
                    elif trend_change < -0.5 and avg_recent_return < -0.2:
                        return "breakdown_bearish"
                
                if avg_recent_return > 0.15:
                    if market_return > 0:
                        return "bullish_strong"
                    else:
                        return "bullish_pullback"
                elif avg_recent_return < -0.3:
                    if market_return < -0.2:
                        return "bearish_high_vol"
                    else:
                        return "bearish_low_vol"
                elif avg_recent_return > 0 and market_return > 0:
                    return "bullish"
                elif avg_recent_return < 0 and market_return < 0:
                    return "bearish"
            
            if market_return > -0.05:
                return "neutral"
            else:
                return "bearish"
        
        return "neutral"
        
    def detect_bearish_signals(self, recent_returns):
        """Detect early warning signs of bearish conditions"""
        bearish_signals = 0
        signal_strength = 0
        
        if len(self.portfolio_returns) >= 5:
            recent_portfolio_returns = self.portfolio_returns[-5:]
            pos_days = sum(1 for r in recent_portfolio_returns if r > 0)
            neg_days = sum(1 for r in recent_portfolio_returns if r < 0)
            
            if neg_days > pos_days:
                bearish_signals += 1
                signal_strength += 0.2 * (neg_days - pos_days)
        
        if len(self.portfolio_returns) >= 10:
            recent_vol = np.std(self.portfolio_returns[-5:])
            older_vol = np.std(self.portfolio_returns[-10:-5])
            if recent_vol > older_vol * 1.3:  # 30% volatility increase
                bearish_signals += 1
                signal_strength += 0.3 * (recent_vol/older_vol - 1)
        
        
        if len(self.portfolio_returns) >= 5:
            if self.portfolio_returns[-1] < 0 and self.portfolio_returns[-2] > 0.3:
                bearish_signals += 1
                signal_strength += 0.3
        
        return bearish_signals, signal_strength
            


    def generate_positions(self, prediction_data, current_returns=None, algorithm=None): # Add algorithm parameter
        """Generate position sizing based on predictions with improved diversification"""
        # Store algorithm instance for logging
        if algorithm:
            self.algorithm = algorithm
        else:
            # Fallback if algorithm instance isn't passed (should not happen from module)
            print("Warning: Algorithm instance not provided to generate_positions for logging.")
            log_func = print
        log_func = self.algorithm.Log if self.algorithm else print # Use Log for important info

        # --- Logging Start ---
        log_func(f"--- generate_positions ---")
        log_func(f"Input predictions count: {len(prediction_data)}") # Log count instead of full dict initially
        # self.algorithm.Debug(f"Input predictions data: {prediction_data}") # Use Debug for potentially large dict
        log_func(f"Input market returns: {current_returns}")
        # --- Logging End ---

        if not prediction_data:
            log_func("generate_positions: No prediction data provided.")
            return {}

        # Update market regime
        if current_returns is not None and len(current_returns) > 0:
            self.current_regime = self.detect_market_regime(current_returns)
            bearish_count, bearish_strength = self.detect_bearish_signals(current_returns)
            self.defensive_mode = bearish_count >= 2 or bearish_strength > 0.5
        else:
            # Default if no returns provided
            self.current_regime = "neutral"
            self.defensive_mode = False

        # --- Define Bullish Regimes and Tech Sector ---
        bullish_regimes = {"bullish_strong", "breakout_bullish", "bullish", "bullish_pullback"}
        is_bullish = self.current_regime in bullish_regimes
        # !!! IMPORTANT: Verify this identifier matches your actual sector data (e.g., GICS code '45') !!!
        TECH_SECTOR_IDENTIFIER = '45'
        tech_boost_factor = 1.15 # Apply a 15% boost in bullish regimes
        # ---

        # Calculate portfolio risk score (0-100)
        portfolio_risk_score = self.calculate_portfolio_risk_score(current_returns if current_returns else [])
        # Convert to a scaling factor (0.1 to 1.0)
        risk_scaling = portfolio_risk_score / 100
        # --- INCREASE MIN RISK SCALING FLOOR ---
        min_risk_scaling = 0.75 # Increased from 0.4 to 0.75 (ensures at least 75% of potential allocation is used)
        # ---
        risk_scaling = max(min_risk_scaling, risk_scaling)
        # ---

        # --- Logging ---
        log_func(f"Regime: {self.current_regime}, Defensive Mode: {self.defensive_mode}")
        log_func(f"Portfolio Risk Score: {portfolio_risk_score}, Risk Scaling (min {min_risk_scaling}): {risk_scaling:.2f}")
        # --- Logging End ---

        # Adjust threshold based on regime (using the fixed default threshold now)
        base_threshold = self.adaptive_threshold # Use the fixed threshold from __init__
        current_threshold = base_threshold # Keep it simple for now, regime adjustment might need tuning for fallback scores
        # --- Logging ---
        log_func(f"Using Threshold: {current_threshold}")
        # --- Logging End ---

        positions = {}

        # Group stocks by sector
        sector_data = {}
        valid_predictions = 0
        for ticker, data in prediction_data.items():
            # Ensure data has the expected keys
            if "pred_return" not in data:
                log_func(f"Warning: Missing 'pred_return' for {ticker}")
                continue
            pred_return = data["pred_return"]
            sector = self.sector_mappings.get(ticker, "Unknown")

            # --- Apply Tech Boost in Bullish Regime ---
            boost_applied = False
            if is_bullish and sector == TECH_SECTOR_IDENTIFIER:
                original_pred = pred_return
                pred_return *= tech_boost_factor
                boost_applied = True
                # Optional Debug Log:
                # self.algorithm.Debug(f"Applied {tech_boost_factor}x boost to {ticker} (Tech) in {self.current_regime} regime. Original: {original_pred:.4f}, Boosted: {pred_return:.4f}")
            # ---

            if sector not in sector_data:
                sector_data[sector] = []

            sector_data[sector].append({
                "ticker": ticker,
                "pred_return": pred_return, # Use potentially boosted value
                # Use the current_threshold for composite score
                "composite_score": pred_return / current_threshold if current_threshold != 0 else pred_return
            })
            valid_predictions += 1

        # --- ADDED LOG ---
        log_func(f"Found {valid_predictions} valid predictions.")
        # ---

        if valid_predictions == 0:
            log_func("generate_positions: No valid predictions after filtering.")
            return {}

        # Rank sectors by average predicted return
        sector_avg_scores = {}
        for sector, stocks in sector_data.items():
            if stocks: # Ensure sector has stocks
                 sector_avg_scores[sector] = np.mean([s["pred_return"] for s in stocks])
            else:
                 sector_avg_scores[sector] = -np.inf # Penalize empty sectors

        ranked_sectors = sorted(sector_avg_scores.keys(), key=lambda x: sector_avg_scores[x], reverse=True)
        # --- Reduce Sector Count ---
        top_sector_count = 4 if portfolio_risk_score > 60 else 3 # Reduced from 5/4
        # ---
        top_sectors = ranked_sectors[:min(top_sector_count, len(ranked_sectors))]

        # --- Logging ---
        log_func(f"Ranked Sectors: {ranked_sectors}")
        log_func(f"Top Sectors Selected ({top_sector_count}): {top_sectors}")
        # --- Logging End ---

        # --- Reduce Stocks Per Sector ---
        stocks_per_sector = 3 if self.current_regime in ["bullish_strong", "breakout_bullish"] else 2 # Reduced from 4/3
        # ---

        # Allocate within top sectors
        selected_stocks_for_positioning = []
        for sector in top_sectors:
            if sector not in sector_data: continue # Skip if sector somehow has no data
            sector_stocks = sorted(sector_data[sector], key=lambda x: x["pred_return"], reverse=True)
            top_stocks_in_sector = sector_stocks[:min(stocks_per_sector, len(sector_stocks))]
            selected_stocks_for_positioning.extend(top_stocks_in_sector)
            # --- Logging ---
            log_func(f"Sector '{sector}': Top stocks {[s['ticker'] for s in top_stocks_in_sector]} with scores {[f'{s:.3f}' for s in [st['pred_return'] for st in top_stocks_in_sector]]}")
            # --- Logging End ---

        # --- Log count before filtering ---
        log_func(f"Selected {len(selected_stocks_for_positioning)} stocks across top sectors before size filtering.")
        # ---

        # Calculate position sizes for selected stocks
        log_func(f"Calculating positions for selected stocks.") # Log count
        for stock in selected_stocks_for_positioning:
            ticker = stock["ticker"]
            # Use pred_return directly for signal strength with fallback scores
            signal_strength = stock["pred_return"]

            # --- Adjust Base Size Calculation & Filter (Less Aggressive) ---
            # Decreased multiplier
            # Kept max base size high (0.6) - allows concentration if signal is strong
            # Increased filter threshold
            base_size_multiplier = 1.5 # Decreased from 2.0
            max_base_size = 0.6
            min_base_size_threshold = 0.05 # Increased from 0.02

            base_size = min(max_base_size, max(0.01, base_size_multiplier * signal_strength))

            # --- Hysteresis Check (Optional) ---
            # entry_threshold_multiplier = 1.1 # Require 10% higher base size to enter than to stay
            # previously_held = ticker in self.algorithm.kqt_previous_positions and self.algorithm.kqt_previous_positions[ticker] > 0
            # required_threshold = min_base_size_threshold if previously_held else min_base_size_threshold * entry_threshold_multiplier
            # if base_size > required_threshold:
            # --- Original Check (No Hysteresis) ---
            if base_size > min_base_size_threshold: # Use the increased threshold
            # ---
                final_size = base_size * risk_scaling
                # --- Increase minimum final size threshold ---
                min_final_size = 0.04 # Increased from 0.03 to 4%
                if final_size >= min_final_size:
                    positions[ticker] = final_size
                    # --- Logging ---
                    self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size: {base_size:.3f}, Final Size: {final_size:.3f}")
                    # --- Logging End ---
                else:
                    self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size: {base_size:.3f}, Final Size ({final_size:.3f}) too small after risk scaling (Min: {min_final_size}), skipping.")
            else:
                 self.algorithm.Debug(f"  Ticker: {ticker}, Signal: {signal_strength:.3f}, Base Size ({base_size:.3f}) too small or negative (Threshold: {min_base_size_threshold}), skipping.")


        # Defensive adjustments
        if self.defensive_mode or self.current_regime in ["bearish_high_vol", "bearish_low_vol", "breakdown_bearish"]:
            # --- Soften Defensive Scaling ---
            scaling_factor = 0.9 if self.defensive_mode else 0.99 # Increased from 0.7/0.85
            # ---
            log_func(f"Defensive Adjustment: Scaling positions by {scaling_factor}")
            for ticker in list(positions.keys()): # Iterate over keys copy
                positions[ticker] *= scaling_factor
                # Use the increased min_final_size as the post-scaling check too
                # --- Use the SAME min_final_size threshold after scaling ---
                if positions[ticker] < min_final_size: # Check against the 4% threshold again
                    log_func(f"  Removing {ticker} due to small size ({positions[ticker]:.4f}) after defensive scaling (Min: {min_final_size}).")
                    del positions[ticker]

            # --- Temporarily Disable Hedges ---
            # Add hedges (shorts) based on negative predictions
            # if portfolio_risk_score < 40:
            #     negative_preds = {t: data["pred_return"] for t, data in prediction_data.items()
            #                     if "pred_return" in data and data["pred_return"] < -0.05 and t not in positions} # Threshold for shorting
            #
            #     if negative_preds:
            #         worst_stocks = sorted(negative_preds.items(), key=lambda x: x[1])[:2]
            #         log_func(f"Defensive Adjustment: Adding Hedges for {worst_stocks}")
            #         for ticker, pred in worst_stocks:
            #             hedge_size = -0.15 if self.defensive_mode else -0.1
            #             positions[ticker] = hedge_size
            #             log_func(f"  Adding hedge {ticker} with size {hedge_size}")
            # ---

        # --- Logging Final ---
        log_func(f"Final positions generated ({len(positions)}): {positions}")
        log_func(f"--- generate_positions END ---")
        # --- Logging End ---
        return positions



    def get_stop_loss_level(self):
        """Get appropriate stop-loss level based on market regime"""
        if self.current_regime in ["bullish_strong", "breakout_bullish"]:
            if self.defensive_mode:
                return -2.0  # Tighter in defensive mode
            else:
                return -3.5  # More room for positions to breathe
        elif self.current_regime in ["bearish_high_vol", "breakdown_bearish"]:
            return -1.5  # Tighter stop-loss in bearish regimes
        else:
            if self.defensive_mode:
                return -1.8
            else:
                return -2.5
    
    def update_portfolio_returns(self, daily_return):
        """Update portfolio return history"""
        self.portfolio_returns.append(daily_return)
        if len(self.portfolio_returns) > 60:  # Keep a rolling window
            self.portfolio_returns = self.portfolio_returns[-60:]