| Overall Statistics |
|
Total Trades 90 Average Win 7.56% Average Loss -2.54% Compounding Annual Return 391608122048122.00% Drawdown 13.800% Expectancy 1.824 Net Profit 573.012% Sharpe Ratio 10.135 Loss Rate 29% Win Rate 71% Profit-Loss Ratio 2.97 Alpha 37.532 Beta -819.073 Annual Standard Deviation 2.487 Annual Variance 6.183 Information Ratio 10.129 Tracking Error 2.487 Treynor Ratio -0.031 Total Fees $0.00 |
#
# QuantConnect Basic Template:
# Fundamentals to using a QuantConnect algorithm.
#
# You can view the QCAlgorithm base class on Github:
# https://github.com/QuantConnect/Lean/tree/master/Algorithm
#
import numpy as np
import csv
import pandas as pd
from datetime import datetime, timezone
from dateutil import parser
import pytz
# from data_service import DataService
class BasicTemplateAldgorithm(QCAlgorithm):
def Initialize(self):
# Set the cash we'd like to use for our backtest
# This is ignored in live trading
self.SetCash(100000)
self.SetTimeZone(TimeZones.Utc)
# Set Brokerage model to load OANDA fee structure.
self.SetBrokerageModel(BrokerageName.OandaBrokerage)
alg = 'a1'
symbol = 'GBPUSD'
granularity = 'M5'
# Add assets you'd like to see
self.pair = self.AddForex(symbol, Resolution.Minute).Symbol
file = self.Download('https://twitter-copy-pip.herokuapp.com/signal_data/{0}/{1}/{2}'.format(alg, symbol, granularity))
# self.Debug(str(file))
sig_data = pd.read_json(file, orient='split')
sig_data = sig_data.sort_values(by=['time'])
first_date = datetime.utcfromtimestamp(sig_data.iloc[0]['time']/1000)
self.Debug('first_date'+str(first_date))
last_date = datetime.utcfromtimestamp(sig_data.iloc[len(sig_data)-1]['time']/1000)
self.Debug('last_date'+str(last_date))
# Start and end dates for the backtest.
# These are ignored in live trading.
self.SetStartDate(first_date.year, first_date.month, first_date.day)
self.SetEndDate(last_date.year, last_date.month, last_date.day)
if alg == 'a1':
action_key = 'action'
else:
action_key = '{0}_action'.format(alg)
# self.Debug(str(sig_data))
for i, row in sig_data.iterrows():
dt = datetime.utcfromtimestamp(row['time']/1000)
if row[action_key] == 'BUY':
self.Debug('creating buy order '+ str(dt))
self.Schedule.On(
self.DateRules.On(dt.year, dt.month, dt.day),
self.TimeRules.At(dt.hour, dt.minute),
Action(self.ScheduledBuy))
if row[action_key] == 'SELL':
self.Debug('creating sell order '+ str(dt))
self.Schedule.On(
self.DateRules.On(dt.year, dt.month, dt.day),
self.TimeRules.At(dt.hour, dt.minute),
Action(self.ScheduledSell))
if row[action_key] == 'HOLD':
self.Debug('CLOSING order '+ str(dt))
self.Schedule.On(
self.DateRules.On(dt.year, dt.month, dt.day),
self.TimeRules.At(dt.hour, dt.minute),
Action(self.ScheduledHold))
def ScheduledBuy(self):
# if self.Portfolio.Invested:
# self.Liquidate(self.pair)
# self.MarketOrder(self.pair, 1000000)
self.SetHoldings(self.pair, 50.0, liquidateExistingHoldings=True)
def ScheduledSell(self):
# if self.Portfolio.Invested:
# self.Liquidate(self.pair)
# self.MarketOrder(self.pair, -1000000)
self.SetHoldings(self.pair, -50.0, liquidateExistingHoldings=True)
def ScheduledHold(self):
if self.Portfolio.Invested:
self.Liquidate(self.pair)
def OnData(self, slice):
pass# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import SubscriptionDataSource
from QuantConnect.Python import PythonData
from datetime import date, timedelta, datetime
import decimal
import numpy as np
import json
### <summary>
### Demonstration of using an external custom datasource. LEAN Engine is incredibly flexible and allows you to define your own data source.
### This includes any data source which has a TIME and VALUE. These are the *only* requirements. To demonstrate this we're loading in "Bitsig_data" data.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="custom data" />
### <meta name="tag" content="crypto" />
# class CustomDataBitsig_dataAlgorithm(QCAlgorithm):
# def Initialize(self):
# self.SetStartDate(2011, 9, 13)
# self.SetEndDate(datetime.now().date() - timedelta(1))
# self.SetCash(100000)
# # Define the symbol and "type" of our generic data:
# self.AddData(Bitsig_data, "BTC")
# def OnData(self, data):
# if not data.ContainsKey("BTC"): return
# close = data["BTC"].Close
# # If we don't have any weather "SHARES" -- invest"
# if not self.Portfolio.Invested:
# # Weather used as a tradable asset, like stocks, futures etc.
# self.SetHoldings("BTC", 1)
# self.Debug("Buying BTC 'Shares': BTC: {0}".format(close))
# self.Debug("Time: {0} {1}".format(datetime.now(), close))
class SignalData(PythonData):
'''Custom Data Type: Bitsig_data data from Quandl - http://www.quandl.com/help/api-for-bitsig_data-data'''
def GetSource(self, config, date, isLiveMode):
# if isLiveMode:
# return SubscriptionDataSource("https://www.bitstamp.net/api/ticker/", SubscriptionTransportMedium.Rest);
#return "http://my-ftp-server.com/futures-data-" + date.ToString("Ymd") + ".zip";
# OR simply return a fixed small data file. Large files will slow down your backtest
return SubscriptionDataSource("https://twitter-copy-pip.herokuapp.com/a1_signal_data/EURUSD_H1.csv?order=asc", SubscriptionTransportMedium.RemoteFile);
def Reader(self, config, line, date, isLiveMode):
sig_data = Bitsig_data()
sig_data.Symbol = config.Symbol
if isLiveMode:
# Example Line Format:
# {"high": "441.00", "last": "421.86", "timestamp": "1411606877", "bid": "421.96", "vwap": "428.58", "volume": "14120.40683975", "low": "418.83", "ask": "421.99"}
try:
liveBTC = json.loads(line)
# If value is zero, return None
value = decimal.Decimal(liveBTC["last"])
if value == 0: return None
sig_data.Time = datetime.now()
sig_data.Value = value
sig_data["Open"] = float(liveBTC["open"])
sig_data["High"] = float(liveBTC["high"])
sig_data["Low"] = float(liveBTC["low"])
sig_data["Close"] = float(liveBTC["last"])
sig_data["Ask"] = float(liveBTC["ask"])
sig_data["Bid"] = float(liveBTC["bid"])
sig_data["VolumeBTC"] = float(liveBTC["volume"])
sig_data["WeightedPrice"] = float(liveBTC["vwap"])
return sig_data
except ValueError:
# Do nothing, possible error in json decoding
return None
# Example Line Format:
# Date Open High Low Close Volume (BTC) Volume (Currency) Weighted Price
# 2011-09-13 5.8 6.0 5.65 5.97 58.37138238, 346.0973893944 5.929230648356
if not (line.strip() and line[0].isdigit()): return None
try:
data = line.split(',')
# If value is zero, return None
value = decimal.Decimal(data[4])
if value == 0: return None
sig_data.Time = datetime.strptime(data[0], "%Y-%m-%d")
sig_data.Value = value
sig_data["Open"] = float(data[1])
sig_data["High"] = float(data[2])
sig_data["Low"] = float(data[3])
sig_data["Close"] = float(data[4])
sig_data["VolumeBTC"] = float(data[5])
sig_data["VolumeUSD"] = float(data[6])
sig_data["WeightedPrice"] = float(data[7])
return sig_data;
except ValueError:
# Do nothing, possible error in json decoding
return None