| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np
import datetime
from scipy import stats
### <summary>
### Basic template algorithm simply initializes the date range and cash. This is a skeleton
### framework you can use for designing an algorithm.
### </summary>
class StocksOnTheMove(QCAlgorithm):
'''Basic template algorithm simply initializes the date range and cash'''
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2013,1,1) #Set Start Date
self.SetEndDate(2013,2,1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
self.AddEquity("SPY", Resolution.Daily)
# what resolution should the data *added* to the universe be?
self.UniverseSettings.Resolution = Resolution.Daily
# How many stocks in the starting universe?
self.__numberOfSymbols = 20
# How many stocks in the portfolio?
self.number_stocks = 5
# this add universe method accepts two parameters:
self.AddUniverse(self.CoarseSelectionFunction)
# How far back are we looking for momentum?
self.momentum_period = 20
# Schedule Indicator Update, Ranking + Rebal
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY", 30), Action(self.rebalance))
# Set Risk Factor for position sizing
self.risk_factor = 0.001
# Set empty list for universe
self.universe = []
# Set empty dictionary for managing & ranking the slope
self.indicators = {}
# Set empty dictionary to manage ATR position sizing for ranked securities
self.target_portfolio = {}
def OnData(self, data):
pass
# Run a coarse selection filter for starting universe
def CoarseSelectionFunction(self, coarse):
today = self.Time
#self.Log("Day = {} Month = {}".format(today.day,today.month))
# Set the Universe to rebalance on the 1st day of each quarter (can play around with this as required)
if today.day == 1 and (today.month == 1 or today.month == 4 or today.month == 7 or today.month == 10):
CoarseWithFundamental = [x for x in coarse if x.HasFundamentalData]
sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True)
result = [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ]
self.universe = result
return self.universe
else:
return self.universe
def rebalance(self):
# This updates the indicators at each data step(based on resolution)
for symbol in self.universe:
# is symbol iin Slice object? (do we even have data on this step for this asset)
if not self.Securities.ContainsKey(symbol):
continue
# 686 | 13:35:43: Runtime Error: Python.Runtime.PythonException: AttributeError : 'NoneType' object has no attribute 'Price'
#if data[symbol] is None:
# continue
# Does this slice have the price data we need at this moment?
#if data[symbol].Price is None:
# continue
# Update the dictionary for the indicator
#history = self.History(symbol, self.momentum_period, Resolution.Daily)["close"].unstack(level=0)
#self.indicators[symbol] = regression_slope(history)
self.indicators[symbol] = update_indicator(self.Time, self.Securities[symbol].Price)
# Sort the Dictionary from highest to lowest and take the top values
self.target_portfolio = sorted(self.indicators, key=self.indicators.get, reverse=True)[:self.number_stocks]
for symbol in self.target_portfolio:
# Liquidate if not in target portfolio
if symbol.Invested:
if symbol not in self.target_portfolio:
self.Liquidate(symbol)
elif symbol in self.target_portfolio:
continue
# Place orders for stocks not current in target portfolio
elif symbol.Invested == False:
#self.Log("{} {} {}"symbol,)
# Update ATR for the stock in the new dictionary
self.target_portfolio[symbol].update_value(self.Time, self.Securities[symbol].Price)
self.Log("{} {} {}".format(symbol,self.Securities[symbol].Price,self.indicators[symbol].ATR.Current.Value))
# Calculate number of shares to buy
quantity = self.target_portfolio[symbol].ATR.Current.Value/(Portfolio.TotalPortfolioValue*self.risk_factor)
# Send Orders
self.MarketOrder(stock, quantity)
class SymbolData(object):
def __init__(self, symbol, context):
self.symbol = symbol
"""
I had to pass ATR from outside object to get it to work, could pass context and use any indica
var atr = ATR(Symbol symbol, int period, MovingAverageType type = null, Resolution resolution = null, Func`2[Data.IBaseData,Data.Market.IBaseDataBar] selector = null)
"""
self.ATR = context.ATR(symbol, 20)
"""
Runtime Error: Python.Runtime.PythonException: NotSupportedException : AverageTrueRange does not support Update(DateTime, decimal) method overload. Use Update(IBaseDataBar) instead.
"""
# Use the below update method for ATR which is used for position sizing
def update_value(self, time, value):
self.ATR.Update(time, value)
class CustomIndicator(object):
def __init__(self, symbol, context):
history = self.History(symbol, self.momentum_period, Resolution.Daily)["close"].unstack(level=0)
# Get Regression Stats & Compute Slope * R^2
def regression_slope(self, time, value):
x = np.arange(len(history))
log_ts = np.log(history)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, log_ts)
annualized_slope = (np.power(np.exp(slope), 250) - 1) * 100
annualized_slope = annualized_slope * (r_value ** 2)
# Return the Indicator
return annualized_slope
def update_indicator(self, time, value):
self.regression_slope.Update(time, value)