| Overall Statistics |
|
Total Trades 5 Average Win 2.96% Average Loss 0% Compounding Annual Return 24.893% Drawdown 14.000% Expectancy 0 Net Profit 12.956% Sharpe Ratio 1.219 Probabilistic Sharpe Ratio 53.217% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.267 Beta -0.132 Annual Standard Deviation 0.178 Annual Variance 0.032 Information Ratio -0.604 Tracking Error 0.265 Treynor Ratio -1.642 Total Fees $7.45 |
from datetime import timedelta
import numpy as np
from scipy import stats
from collections import deque
class ModulatedMultidimensionalReplicator(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 6, 1) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
self.AddAlpha(MOMAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.AddEquity('GLD', Resolution.Daily)
self.AddEquity('QQQ', Resolution.Daily)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
# if not self.Portfolio.Invested:
# self.SetHoldings("SPY", 1)
class MOMAlphaModel(AlphaModel):
def __init__(self):
self.mom = {}
self.indicator = True
def OnSecuritiesChanged(self, algorithm, changes):
for security in changes.AddedSecurities:
symbol = security.Symbol
self.mom[symbol] = My_Custom('My_Custom', symbol, 100)
algorithm.RegisterIndicator(symbol, self.mom[symbol], Resolution.Daily)
history = algorithm.History(symbol, 100, Resolution.Daily)
self.mom[symbol].Warmup(history)
if not self.mom[symbol]:
self.indicator = False
def Update(self, algorithm, data):
insights = []
# plot the indicator
algorithm.Plot("Custom_Slope", "Value", list(self.mom.values())[0].Value )
if self.indicator == True:
ordered = sorted(self.mom.items(), key=lambda x: x[1].Value, reverse=True)[:1]
for x in ordered:
symbol = x[0]
insights.append( Insight.Price(symbol, timedelta(1), InsightDirection.Up) )
return insights
# Python implementation of Custom Indicator
class My_Custom:
def __init__(self, name, symbol, period):
self.symbol = symbol
self.Name = name
self.Time = datetime.min
self.Value = 0
self.queue = deque(maxlen=period)
self.IsReady = False
# Update method is mandatory
def Update(self, input):
return self.Update2(input.Time, input.Close)
def Update2(self, time, value):
self.queue.appendleft(value)
count = len(self.queue)
self.Time = time
self.IsReady = count == self.queue.maxlen
#### start here the indicator calulation
if self.IsReady:
y = np.log(self.queue)
x = [range(len(y))]
slope = stats.linregress(x, y)[0]
self.Value = slope * 10000 # value is very small an will display 0 if not multiplyed
#### finish the custom indicator
# for testing self.IsReady = False
self.IsReady = False
return self.IsReady
def Warmup(self,history):
for index, row in history.loc[self.symbol].iterrows():
self.Update2(index, row['close'])