| Overall Statistics |
|
Total Trades 3148 Average Win 0.24% Average Loss -0.27% Compounding Annual Return 8.476% Drawdown 24.300% Expectancy 0.072 Net Profit 73.458% Sharpe Ratio 0.613 Loss Rate 44% Win Rate 56% Profit-Loss Ratio 0.91 Alpha 0.078 Beta -0.033 Annual Standard Deviation 0.121 Annual Variance 0.015 Information Ratio -0.202 Tracking Error 0.18 Treynor Ratio -2.208 Total Fees $3269.17 |
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
class BasicTemplateAlgorithm(QCAlgorithm):
def __init__(self):
# set the flag for rebalance
self.reb = 1
# Number of stocks to pass CoarseSelection process
self.num_coarse = 130
# Number of stocks to long/short
self.num_fine = 20
self.symbols = None
self.first_month = 1
def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2011,1,1)
# if not specified, the Backtesting EndDate would be today
#self.SetEndDate(2011,2,1)
self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)
# Schedule the rebalance function to execute at the begining of each month
self.Schedule.On(self.DateRules.MonthStart(self.spy),
self.TimeRules.AfterMarketOpen(self.spy,5), Action(self.rebalance))
def CoarseSelectionFunction(self, coarse):
if self.reb == 1:
filtered_coarse = [x for x in coarse if x.HasFundamentalData]
sortedByDollarVolume = sorted(filtered_coarse, key=lambda x: x.DollarVolume, reverse=True)
self.coarse_list = [ x.Symbol for x in sortedByDollarVolume[:self.num_coarse] ]
return self.coarse_list
def FineSelectionFunction(self, fine):
# drop stocks which don't have the information we need.
# you can try replacing those factor with your own factors here
filtered_fine = [x for x in fine if x.ValuationRatios.PERatio
and x.ValuationRatios.BookValueYield
and x.ValuationRatios.PricetoEBITDA]
self.Log('remained to select %d'%(len(filtered_fine)))
# rank stocks by three factor.
sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PERatio, reverse=True)
sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValueYield, reverse=False)
sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PricetoEBITDA, reverse=True)
stock_dict = {}
# assign a score to each stock, you can also change the rule of scoring here.
for i,ele in enumerate(sortedByfactor1):
rank1 = i
rank2 = sortedByfactor2.index(ele)
rank3 = sortedByfactor3.index(ele)
score = sum([rank1*0.5,rank2*0.3,rank3*0.2])
stock_dict[ele] = score
# sort the stocks by their scores
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False)
sorted_symbol = [x[0] for x in self.sorted_stock]
self.Log(str([x.Symbol.Value for x in sorted_symbol]))
# sotre the top stocks into the long_list and the bottom ones into the short_list
self.long = [x.Symbol for x in sorted_symbol[:self.num_fine]]
self.short = [x.Symbol for x in sorted_symbol[-self.num_fine:]]
topFine = self.long+self.short
return topFine
def OnData(self, data):
pass
def rebalance(self):
self.first_month = 1
# if this month the stock are not going to be long/short, liquidate it.
long_short_list = self.long + self.short
for i in self.Portfolio.Values:
if (i.Invested) and (i.Symbol not in long_short_list):
self.Liquidate(i.Symbol)
# Alternatively, you can liquidate all the stocks at the end of each month.
# Which method to choose depends on your investment philosiphy
# if you prefer to realized the gain/loss each month, you can choose this method.
#self.Liquidate()
# Assign each stock equally. Alternatively you can design your own portfolio construction method
for i in self.long:
self.SetHoldings(i,1.0/self.num_fine)
for i in self.short:
self.SetHoldings(i,-1.0/self.num_fine)
self.reb += 1
if self.reb == 12:
self.reb = 0