| Overall Statistics |
|
Total Trades 16 Average Win 10.98% Average Loss 0% Compounding Annual Return 31.198% Drawdown 6.400% Expectancy 0 Net Profit 116.240% Sharpe Ratio 2.289 Probabilistic Sharpe Ratio 95.994% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha 0.328 Beta 0.222 Annual Standard Deviation 0.142 Annual Variance 0.02 Information Ratio 1.303 Tracking Error 0.261 Treynor Ratio 1.463 Total Fees $285.02 |
"""
Based on 'In & Out' strategy by Peter Guenther 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, and Thomas Chang.
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1
"""
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
class InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2007, 3, 1) # Set Start Date
self.SetEndDate(2010, 1, 1) # Set End Date
self.SetCash(100000) # Set Strategy Cash
res = Resolution.Minute
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.BND2 = self.AddEquity('TLT', res).Symbol #IEF; TYD for 3xlev
self.BND3 = self.AddEquity('GLD', res).Symbol #IEF; TYD for 3xlev
self.HLD_OUT = {self.BND1: 1, self.BND2: 0, self.BND3: 0}
### 'In' holdings and weights (static stock selection strategy)
self.STKS = self.AddEquity('QQQ', res).Symbol #SPY or QQQ; TQQQ for 3xlev
#self.STKS2 = self.AddEquity('SPXL', res).Symbol #SPY or QQQ; TQQQ for 3xlev
#self.STKS3 = self.AddEquity('TNA', res).Symbol #SPY or QQQ; TQQQ for 3xlev
#self.HLD_IN = {self.STKS: 1, self.STKS2: 0, self.STKS3: 0}
self.HLD_IN = {self.STKS: 1}
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('QQQ', res).Symbol # market
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SHCU = self.AddEquity('FXF', res).Symbol # safe haven currency (CHF)
self.RICU = self.AddEquity('FXA', res).Symbol # vs risk currency (AUD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.SHCU, self.RICU]
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.DEBT, self.USDX]
# Initialize variables
## 'In'/'out' indicator
self.be_in = 999 #initially, set to an arbitrary value different from 1 (in) and 0 (out)
## Day count variables
self.dcount = 0 # count of total days since start
self.outday = 0 # dcount when self.be_in=0
## Flexi wait days
self.WDadjvar = self.INI_WAIT_DAYS
# set a warm-up period to initialize the indicator
#self.SetWarmUp(timedelta(350))
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('QQQ', 120),
self.rebalance_when_out_of_the_market
)
self.Schedule.On(
self.DateRules.WeekEnd(),
self.TimeRules.AfterMarketOpen('QQQ', 120),
self.rebalance_when_in_the_market
)
def rebalance_when_out_of_the_market(self):
# Returns sample to detect extreme observations
hist = self.History(
self.SIGNALS + [self.MRKT] + self.FORPAIRS, 252, Resolution.Daily)['close'].unstack(level=0).dropna()
hist_shift = hist.apply(lambda x: (x.shift(65) + x.shift(64) + x.shift(63) + x.shift(62) + x.shift(
61) + x.shift(60) + x.shift(59) + x.shift(58) + x.shift(57) + x.shift(56) + x.shift(55)) / 11)
returns_sample = (hist / hist_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample['C_A'] = -(returns_sample[self.SHCU] - returns_sample[self.RICU])
self.pairlist = ['G_S', 'U_I', 'C_A']
# Extreme observations; statist. significance = 1%
pctl_b = np.nanpercentile(returns_sample, 1, axis=0)
extreme_b = returns_sample.iloc[-1] < pctl_b
# Determine waitdays empirically via safe haven excess returns, 50% decay
self.WDadjvar = int(
max(0.50 * self.WDadjvar,
self.INI_WAIT_DAYS * max(1,
np.where((returns_sample[self.GOLD].iloc[-1]>0) & (returns_sample[self.SLVA].iloc[-1]<0) & (returns_sample[self.SLVA].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.UTIL].iloc[-1]>0) & (returns_sample[self.INDU].iloc[-1]<0) & (returns_sample[self.INDU].iloc[-2]>0), self.INI_WAIT_DAYS, 1),
np.where((returns_sample[self.SHCU].iloc[-1]>0) & (returns_sample[self.RICU].iloc[-1]<0) & (returns_sample[self.RICU].iloc[-2]>0), self.INI_WAIT_DAYS, 1)
))
)
adjwaitdays = min(60, self.WDadjvar)
# self.Debug('{}'.format(self.WDadjvar))
# Determine whether 'in' or 'out' of the market
if (extreme_b[self.SIGNALS + self.pairlist]).any():
self.be_in = False
self.outday = self.dcount
if self.dcount >= self.outday + adjwaitdays:
self.be_in = True
self.dcount += 1
#self.be_in = True # for testing; sets the algo to being always in
# Swap to 'out' assets if applicable
if not self.be_in:
self.wt = {**dict.fromkeys(self.HLD_IN, 0), **self.HLD_OUT}
# Only trade when changing from in to out
self.trade()
self.Plot("In Out", "in_market", int(self.be_in))
self.Plot("In Out", "num_out_signals", extreme_b[self.SIGNALS + self.pairlist].sum())
self.Plot("Wait Days", "waitdays", adjwaitdays)
def rebalance_when_in_the_market(self):
# Swap to 'in' assets if applicable
if self.be_in:
self.wt = {**self.HLD_IN, **dict.fromkeys(self.HLD_OUT, 0)}
# Only trade when changing from out to in
self.trade()
def trade(self):
buys = []
for sec, weight in self.wt.items():
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
quantity = self.CalculateOrderQuantity(sec, weight)
if quantity > 0:
buys.append((sec, quantity))
elif quantity < 0:
self.Order(sec, quantity)
for sec, quantity in buys:
self.Order(sec, quantity)