| Overall Statistics |
|
Total Trades 3877 Average Win 0.78% Average Loss -1.00% Compounding Annual Return 62.223% Drawdown 62.000% Expectancy 0.480 Net Profit 129421.119% Sharpe Ratio 1.168 Probabilistic Sharpe Ratio 35.930% Loss Rate 17% Win Rate 83% Profit-Loss Ratio 0.78 Alpha 0.446 Beta 1.826 Annual Standard Deviation 0.496 Annual Variance 0.246 Information Ratio 1.228 Tracking Error 0.412 Treynor Ratio 0.317 Total Fees $1069371.53 Estimated Strategy Capacity $780000.00 Lowest Capacity Asset BND TRO5ZARLX6JP |
#region imports
from AlgorithmImports import *
#endregion
"""
Based on 'In & Out' strategy by Peter Guenther 4 Oct 2020
expanded/inspired by Tentor Testivis, Dan Whitnable (Quantopian), Vladimir, Thomas Chang,
Derek Melchin (QuantConnect), Nathan Swenson, and Goldie Yalamanchi.
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/p1
"""
# Import packages
import numpy as np
import pandas as pd
from collections import deque
import pickle
from dateutil.relativedelta import relativedelta
class InOut(QCAlgorithm):
def Initialize(self):
if not self.LiveMode:
yr_delta = int(self.GetParameter("m"))
# following will it for 1 year, you can run it in paralllel in optimizer by selectong value of m from 0 to 13
yr, m, d, n = 2008, 1, 1, 365*1
# following willrun it for 14 years
# yr, m, d, n = 2008, 1, 1, 365 * 14
# yr, m, d, n = 2008, 1, 1, 10
std = date(yr + yr_delta, m, d)
edt = std + relativedelta(days=+n)
self.SetStartDate(std.year, std.month, std.day)
#self.SetEndDate(edt.year, edt.month, edt.day)
self.cap = 100000
self.SetCash(self.cap) # Set Strategy Cash
self.SetStartDate(2008, 1, 1)
res = Resolution.Minute
#self.AddRiskManagement(MaximumDrawdownPercentPerSecurity(0.175))
#self.AddRiskManagement(TrailingStopRiskManagementModel(0.15))
self.frequent_rebalance = True
# self.frequent_rebalance = False
self.stat_alpha = 5
signal_history_period = 20
self.lookback = 5 * 252
self.exp_f = 2
self.smoothing_factor = self.exp_f / (signal_history_period + 1)
# Initialize parameters and tracking variables
self.price_smoothing_period, self.momentum_period = 11, 60
#These are the growth symbols we'll rotate through
GrowthSymbols = ["EFA","BND", "EEM", "TQQQ"]
# EFA Large to Mid Cap stocks non in US or Canada
# SPXL 3x leveraged index of SPX
# TQQQ 3x leveraged index of QQQ
# EEM Large to Mid Cap stocks in emerging markets
# VWO stocks in emerging markets
# BND Bond market
# BIL 1 month T-bond same as cash
# VEA stocks in developed conntries outside of the US
# these are the safety symbols we go to when things are looking bad for growth
SafetySymbols = ["BIL", "IEF", "DBC", "XLP", "TLT", "TBT", "LQD", "SHY","TIP", "UUP"]
# IEF 7-10 year T-Bond
# BIL 1 month T-Bond
# DBC commodities, metals, agriculture, energy, etc
# XLP Consumer Staples
# TLT 20 year T-Bond
# TBT inverse 20 year T-Bond
# LQD investment grade corporate bonds
# SHY 1-3 year T-Bond
# Storing all risky asset data into SymbolData object
self.SymbolData = []
for symbol in list(GrowthSymbols):
self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute).SetLeverage(10)
self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily)
self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily)
self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily)
self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily)
self.SymbolData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance])
# Storing all risk-free data into SafetyData object
self.SafetyData = []
for symbol in list(SafetySymbols):
self.AddSecurity(SecurityType.Equity, symbol, Resolution.Minute).SetLeverage(10)
self.oneMonthPerformance = self.MOMP(symbol, 21, Resolution.Daily)
self.threeMonthPerformance = self.MOMP(symbol, 63, Resolution.Daily)
self.sixMonthPerformance = self.MOMP(symbol, 126, Resolution.Daily)
self.twelveMonthPerformance = self.MOMP(symbol, 252, Resolution.Daily)
self.SafetyData.append([symbol, self.oneMonthPerformance, self.threeMonthPerformance, self.sixMonthPerformance, self.twelveMonthPerformance])
# Holdings
### 'Out' holdings and weights
self.HLD_OUT = {self.AddEquity('TLT', res).Symbol: 1.0} # TLT; TMF for 3xlev
### 'In' holdings and weights (static stock selection strategy)
self.HLD_IN = {self.AddEquity('QQQ', res).Symbol: 1.0}
#self.HLD_IN = {self.AddEquity('TQQQ', res).Symbol: 1, self.AddEquity('EFA', res).Symbol: .5} #SPY or QQQ; TQQQ for 3xlev
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('QQQ', res).Symbol # market; QQQ
self.PRDC = self.AddEquity('XLI', res).Symbol # production (industrials)
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.NRES = self.AddEquity('IGE', res).Symbol # input prices (natural res)
self.DEBT = self.AddEquity('SHY', res).Symbol # cost of debt (bond yield)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.PRDC # vs industrials
self.SIGNALS = [self.PRDC, self.METL, self.NRES, self.USDX, self.DEBT, self.MRKT]
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU]
self.pairlist = ['G_S', 'U_I']
self.signal_dens = deque([0] * signal_history_period,maxlen=signal_history_period)
# Symbols for charts
self.SPY = self.AddEquity('SPY', res).Symbol
self.QQQ = self.MRKT
# Setup daily consolidation
self.symbols = list(set(
self.SIGNALS + [self.MRKT] + self.FORPAIRS + list(self.HLD_OUT.keys()) + list(self.HLD_IN.keys()) + [
self.SPY] + [self.QQQ]))
# for symbol in symbols:
# self.consolidator = TradeBarConsolidator(timedelta(days=1))
# self.consolidator.DataConsolidated += self.consolidation_handler
# self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
for symbol in self.symbols:
self.Securities[symbol].MarginModel = PatternDayTradingMarginModel()
self.getFreshHistory()
# Benchmarks for charts
self.benchmarks = [self.history[self.SPY].iloc[-2], self.history[self.QQQ].iloc[-2]]
self.SetWarmUp(50, Resolution.Daily)
self.bull_signal_up = 1
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('QQQ', 120),
self.trade)
# def consolidation_handler(self, sender, consolidated):
# return
# self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
# self.history = self.history.iloc[-self.lookback:]
# # self.update_history_shift()
def OnData(self, slice):
self.slice = slice
if self.IsWarmingUp:
self.inout_check()
def getFreshHistory(self):
self.history = self.History(self.symbols, self.lookback, Resolution.Daily)
if self.history is None or self.history.empty or 'close' not in self.history.columns:
return
# self.history = self.history['close'].unstack(level=0).dropna()
self.history = self.history['open'].unstack(level=0).dropna()
self.history = self.addLatest(self.history)
self.history_shift = self.history.rolling(self.price_smoothing_period, center=True).mean().shift(self.momentum_period)
def addLatest(self, hist):
hist2 = hist
col = 0
for s in hist.columns:
# latest = self.Securities[s].Price
latest = self.Securities[s].Open
hist2.loc[self.Time, s] = latest
col += 1
hist2 = hist2.iloc[-self.lookback:]
return hist2
def replace_tqqq(self):
if self.Time.date() <= datetime.strptime('2010-02-09', '%Y-%m-%d').date():
self.HLD_IN[list(self.HLD_IN.keys())[0]] = 0
self.HLD_IN[list(self.HLD_IN.keys())[1]] = 1
else:
self.HLD_IN[list(self.HLD_IN.keys())[0]] = 1; self.HLD_IN[list(self.HLD_IN.keys())[1]] = 0
def inout_check(self):
self.getFreshHistory()
if self.history is None or self.history.empty:
return
# if Symbol.Create('TQQQ', SecurityType.Equity, Market.USA) in self.HLD_IN.keys(): self.replace_tqqq()
# Load saved signal density (for live interruptions):
if self.LiveMode and sum(list(self.signal_dens)) == 0 and self.ObjectStore.ContainsKey('OS_signal_dens'):
OS = self.ObjectStore.ReadBytes('OS_signal_dens')
OS = pickle.loads(bytearray(OS))
self.signal_dens = deque(OS, maxlen=100)
returns_sample = (self.history / self.history_shift - 1)
# Reverse code USDX: sort largest changes to bottom
returns_sample[self.USDX] = returns_sample[self.USDX] * (-1)
# For pairs, take returns differential, reverse coded
returns_sample['G_S'] = -(returns_sample[self.GOLD] - returns_sample[self.SLVA])
returns_sample['U_I'] = -(returns_sample[self.UTIL] - returns_sample[self.INDU])
returns_sample = returns_sample[self.SIGNALS + self.pairlist]
# Extreme observations; statistical significance = X% (stat_alpha)
extreme_b = returns_sample.iloc[-1] < np.nanpercentile(returns_sample, self.stat_alpha, axis=0)
# Re-assess/disambiguate double-edged signals
abovemedian = returns_sample.iloc[-1] > np.nanmedian(returns_sample, axis=0)
### Interest rate expectations (cost of debt) may increase because the economic outlook improves (showing in rising input prices) = actually not a negative signal
extreme_b.loc[self.DEBT] = np.where(
(extreme_b.loc[self.DEBT].any()) & (abovemedian[[self.METL, self.NRES]].any()), False,
extreme_b.loc[self.DEBT])
n = len(self.SIGNALS + self.pairlist)
self.cur_signal_dens = extreme_b.sum() / n * 100
add_dens = (1 - self.smoothing_factor) * self.signal_dens[-1] + self.smoothing_factor * self.cur_signal_dens
self.signal_dens.append(add_dens)
# Determine whether 'in' or 'out' of the market
if self.cur_signal_dens >= self.stat_alpha / 2 and (\
self.signal_dens[-1] > (self.signal_dens[-2])):
self.bull_signal_up = 0
elif (self.signal_dens[-1] <= min(self.signal_dens)):
self.bull_signal_up = 1
def trade(self):
res = Resolution.Minute
self.inout_check()
if self.IsWarmingUp:
return
orderedObjScores = sorted(self.SymbolData,
key=lambda x: Score(x[1].Current.Value, x[2].Current.Value, x[3].Current.Value,
x[4].Current.Value).ObjectiveScore(), reverse=True)
bestGrowth = orderedObjScores[0]
##Using the Score class at the bottom, compute the score for each risk-free asset.
orderedSafeScores = sorted(self.SafetyData,
key=lambda x: Score(x[1].Current.Value, x[2].Current.Value, x[3].Current.Value,
x[4].Current.Value).ObjectiveScore(), reverse=True)
bestSafe = orderedSafeScores[0]
self.HLD_OUT = {self.AddEquity(bestSafe[0], res).Symbol: 1.0} # TLT; TMF for 3xlev
self.Log("BUY SAFE:" + str(bestSafe[0]) + "@" + str(bestSafe[1].Current.Value))
self.HLD_IN = {self.AddEquity(bestGrowth[0], res).Symbol: 1.0}
if not self.bull_signal_up:
weight_by_sec = {**dict.fromkeys(self.HLD_IN, 0), **self.HLD_OUT}
if self.bull_signal_up:
weight_by_sec = {**self.HLD_IN, **dict.fromkeys(self.HLD_OUT, 0)}
# sort: execute largest sells first, largest buys last
hold_wt = {k: (self.Portfolio[k].Quantity * self.Portfolio[k].Price) / self.Portfolio.TotalPortfolioValue for k
in self.Portfolio.Keys}
order_wt = {k: weight_by_sec[k] - hold_wt.get(k, 0) for k in weight_by_sec}
weight_by_sec = {k: weight_by_sec[k] for k in dict(sorted(order_wt.items(), key=lambda item: item[1]))}
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
# Only trade if holdings fundamentally change
cond1 = (weight == 0) and self.Portfolio[sec].Invested
# Change introduced by Manoj Agarwala for frequent rebalancing
cond2 = (abs(weight) > 0.01) and \
(self.frequent_rebalance \
or (not self.Portfolio[sec].Invested and not self.frequent_rebalance))
if cond1 or cond2:
self.SetHoldings(sec, weight)
self.charts()
# Save data: signal density from live trading for interruptions (note: backtest saves data at the end so that it's available for live trading).
if self.LiveMode: self.SaveData()
def charts(self):
# Market comparisons
spy_perf = self.history[self.SPY].iloc[-1] / self.benchmarks[0] * self.cap
qqq_perf = self.history[self.QQQ].iloc[-1] / self.benchmarks[1] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
self.Plot('Strategy Equity', 'QQQ', qqq_perf)
# Signals
# self.Plot("In Out", "in_market", self.be_in[-1])
# self.Plot("In Out", "signal_dens", self.signal_dens[-1])
# self.Plot("Signals", "PRDC", int(extreme_b[self.SIGNALS + self.pairlist][0]))
# self.Plot("Signals", "METL", int(extreme_b[self.SIGNALS + self.pairlist][1]))
# self.Plot("Signals", "NRES", int(extreme_b[self.SIGNALS + self.pairlist][2]))
# self.Plot("Signals", "USDX", int(extreme_b[self.SIGNALS + self.pairlist][3]))
# self.Plot("Signals", "DEBT", int(extreme_b[self.SIGNALS + self.pairlist][4]))
# self.Plot("Signals", "MRKT", int(extreme_b[self.SIGNALS + self.pairlist][5]))
# self.Plot("Signals", "G_S", int(extreme_b[self.SIGNALS + self.pairlist][6]))
# self.Plot("Signals", "U_I", int(extreme_b[self.SIGNALS + self.pairlist][7]))
# Comparison of out returns
# self.portf_val.append(self.Portfolio.TotalPortfolioValue)
# if not self.be_in[-1] and len(self.be_in) >= 2:
# period = np.where(np.array(self.be_in)[:-1] != np.array(self.be_in)[1:])[0][-1] - len(self.be_in)
# mrkt_ret = self.history[self.MRKT].iloc[-1] / self.history[self.MRKT].iloc[period] - 1
# strat_ret = self.portf_val[-1] / self.portf_val[period] - 1
# strat_vs_mrkt = round(float(strat_ret - mrkt_ret), 4)
# else:
# strat_vs_mrkt = 0
# self.Plot('Out return', 'PF vs MRKT', strat_vs_mrkt)
def SaveData(self):
self.ObjectStore.SaveBytes('OS_signal_dens', pickle.dumps(self.signal_dens))
class Score(object):
def __init__(self, oneMonthPerformanceValue, threeMonthPerformanceValue, sixMonthPerformanceValue,
twelveMonthPerformanceValue):
self.oneMonthPerformance = oneMonthPerformanceValue
self.threeMonthPerformance = threeMonthPerformanceValue
self.sixMonthPerformance = sixMonthPerformanceValue
self.twelveMonthPerformance = twelveMonthPerformanceValue
def ObjectiveScore(self):
weight1 = 12
weight2 = 4
weight3 = 2
weight4 = 1
return (weight1 * self.oneMonthPerformance) + (weight2 * self.threeMonthPerformance) + (
weight3 * self.sixMonthPerformance) + (self.twelveMonthPerformance * weight4)