| Overall Statistics |
|
Total Trades 3908 Average Win 0.08% Average Loss -0.06% Compounding Annual Return 16.414% Drawdown 31.900% Expectancy 0.776 Net Profit 113.987% Sharpe Ratio 0.637 Probabilistic Sharpe Ratio 14.063% Loss Rate 28% Win Rate 72% Profit-Loss Ratio 1.46 Alpha 0.025 Beta 1.049 Annual Standard Deviation 0.209 Annual Variance 0.044 Information Ratio 0.262 Tracking Error 0.116 Treynor Ratio 0.127 Total Fees $3967.87 Estimated Strategy Capacity $120000.00 Lowest Capacity Asset FORTY R735QTJ8XC9X |
# g score investing updated
from AlgorithmImports import *
import statistics as stat
from collections import deque
class DynamicCalibratedGearbox(QCAlgorithm):
def Initialize(self):
self.tech_ROA_key = 'TECH_ROA'
self.SetStartDate(2017, 6, 1)
self.SetEndDate(2022, 6, 1)
self.SetCash(100000)
self.SetBrokerageModel(AlphaStreamsBrokerageModel())
self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(days=31)))
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time:None))
self.AddUniverseSelection(FineFundamentalUniverseSelectionModel(self.CoarseFilter, self.FineFilter))
self.UniverseSettings.Resolution = Resolution.Daily
self.curr_month = -1
self.tech_ROA = {}
self.symbols = None
self.quarters = 0
self.SetWarmUp(756, Resolution.Daily)
def CoarseFilter(self, coarse):
if self.curr_month == self.Time.month:
return Universe.Unchanged
self.curr_month = self.Time.month
if self.Time.month % 3 != 1:
return Universe.Unchanged
self.quarters += 1
return [c.Symbol for c in coarse if c.HasFundamentalData]
def FineFilter(self, fine):
tech_securities = [f for f in fine if f.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology and
f.OperationRatios.ROA.ThreeMonths]
for security in tech_securities:
symbol = security.Symbol
if symbol not in self.tech_ROA:
self.tech_ROA[symbol] = deque(maxlen=12)
self.tech_ROA[symbol].append(security.OperationRatios.ROA.ThreeMonths)
if self.Time.month != 4 or (self.quarters < 12 ):
return Universe.Unchanged
tech_securities = [x for x in tech_securities if x.OperationRatios.ROA.OneYear and
x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths and
x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths and
x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths and
x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths and
x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths and
x.MarketCap]
tech_VARROA = {symbol:stat.variance(ROA) for symbol, ROA in self.tech_ROA.items() if len(ROA) == ROA.maxlen}
if len(tech_VARROA) < 2:
return Universe.Unchanged
tech_VARROA_median = stat.median(tech_VARROA.values())
tech_ROA1Y = {x.Symbol:x.OperationRatios.ROA.OneYear for x in tech_securities}
tech_ROA1Y_median = stat.median(tech_ROA1Y.values())
tech_CFROA = {x.Symbol: (
x.FinancialStatements.CashFlowStatement.OperatingCashFlow.TwelveMonths
/ x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths
) for x in tech_securities}
tech_CFROA_median = stat.median(tech_CFROA.values())
tech_RD2MktCap = {x.Symbol: (
x.FinancialStatements.IncomeStatement.ResearchAndDevelopment.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_RD2MktCap_median = stat.median(tech_RD2MktCap.values())
tech_CaPex2MktCap = {x.Symbol: (
x.FinancialStatements.CashFlowStatement.CapExReported.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_CaPex2MktCap_median = stat.median(tech_CaPex2MktCap.values())
tech_Ad2MktCap = {x.Symbol: (
x.FinancialStatements.IncomeStatement.SellingGeneralAndAdministration.TwelveMonths / x.MarketCap
) for x in tech_securities}
tech_Ad2MktCap_median = stat.median(tech_Ad2MktCap.values())
has_book = [f for f in fine if f.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths and f.MarketCap]
sorted_by_BM = sorted(has_book, key=lambda x: x.FinancialStatements.BalanceSheet.NetTangibleAssets.TwelveMonths / x.MarketCap)[:len(has_book)//4]
tech_symbols = [f.Symbol for f in sorted_by_BM if f in tech_securities]
ratioDicts_medians = [(tech_ROA1Y, tech_ROA1Y_median),
(tech_CFROA, tech_CFROA_median), (tech_RD2MktCap, tech_RD2MktCap_median),
(tech_CaPex2MktCap, tech_CaPex2MktCap_median), (tech_Ad2MktCap, tech_Ad2MktCap_median)]
def compute_g_score(symbol):
g_score = 0
if tech_CFROA[symbol] > tech_ROA1Y[symbol]:
g_score += 1
if symbol in tech_VARROA and tech_VARROA[symbol] < tech_VARROA_median:
g_score += 1
for ratio_dict, median in ratioDicts_medians:
if symbol in ratio_dict and ratio_dict[symbol] > median:
g_score += 1
return g_score
g_scores = {symbol:compute_g_score(symbol) for symbol in tech_symbols}
return [symbol for symbol, g_score in g_scores.items() if g_score >= 5]