| Overall Statistics |
|
Total Trades 4 Average Win 0.01% Average Loss -4.16% Compounding Annual Return -3.679% Drawdown 15.000% Expectancy -0.499 Net Profit -1.519% Sharpe Ratio -0.048 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.00 Alpha -0.171 Beta 1.411 Annual Standard Deviation 0.204 Annual Variance 0.042 Information Ratio -0.904 Tracking Error 0.137 Treynor Ratio -0.007 Total Fees $43.03 |
#
# QuantConnect Basic Template:
# Fundamentals to using a QuantConnect algorithm.
#
# You can view the QCAlgorithm base class on Github:
# https://github.com/QuantConnect/Lean/tree/master/Algorithm
#
import numpy as np
class BasicTemplateAlgorithm(QCAlgorithm):
def Initialize(self):
# Set the cash we'd like to use for our backtest
# This is ignored in live trading
self.SetCash(100000)
# Start and end dates for the backtest.
# These are ignored in live trading.
self.SetStartDate(2016,5,5)
self.SetEndDate(2016,10,2)
# Add assets you'd like to see
self.gs = self.AddEquity("GS", Resolution.Daily).Symbol
self.ms = self.AddEquity("MS", Resolution.Daily).Symbol
self.goog = self.AddEquity("GOOG",Resolution.Daily).Symbol
self.count = 0
def OnData(self, slice):
# Simple buy and hold template
if self.count == 1:
self.SetHoldings(self.gs, 1)
self.SetHoldings(self.ms, -1)
elif self.count == 10:
# self.SetHoldings(self.ms,0)
self.Liquidate(self.ms)
self.SetHoldings(self.gs, 1)
self.SetHoldings(self.goog, -1)
self.count += 1