| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.668 Tracking Error 0.303 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
from System import *
from QuantConnect import *
from QuantConnect.Data.Consolidators import *
from QuantConnect.Data.Market import *
from QuantConnect.Orders import OrderStatus
from QuantConnect.Algorithm import QCAlgorithm
from QuantConnect.Indicators import *
import numpy as np
from datetime import timedelta, datetime
class MultipleSymbolMultipleIndicatorDatapoint(QCAlgorithm):
def Initialize(self):
RollingWindowSize = 2 # How many bars worth of data do you need?
self.Data = {} # The dictionary to use
EquitySymbols = ["AAPL","SPY","IBM"] # As many as you like. This can also work with a QC Universe
# Date bookends
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2020, 12, 31)
self.SetWarmup(30)
# initialize our equity data
for symbol in EquitySymbols:
equity = self.AddEquity(symbol, Resolution.Daily)
self.Data[symbol] = SymbolData(equity.Symbol, RollingWindowSize) # See SymbolData class below
# loop through all our symbols and request data subscriptions and initialize indicator
for symbol, symbolData in self.Data.items():
# define the indicator
symbolData.MACD = MovingAverageConvergenceDivergence("MACD", 12, 26, 9, Resolution.Daily)
# define a consolidator to consolidate data for this symbol on the requested period
consolidator = TradeBarConsolidator(1) # Only need one day in the bar, but this could be any size
# write up our consolidator to update the indicator
consolidator.DataConsolidated += self.OnDataConsolidated
# we need to add this consolidator so it gets auto updates
self.SubscriptionManager.AddConsolidator(symbolData.Symbol, consolidator)
def OnDataConsolidated(self, sender, bar):
if not SymbolData.IsReady: return # Don't bother if there's no data yet
self.Data[bar.Symbol.Value].MACD.Update(bar.Time, bar.Close) # This updates the MACD indicator
self.Data[bar.Symbol.Value].Bars.Add(bar) # This updates the ticker data in its rolling window
def OnData(self,data):
# loop through each symbol in our structure
for symbol in self.Data.keys():
symbolData = self.Data[symbol]
if symbolData.IsReady():
## All data points for the MACD are accessible through symbolData
self.Debug(str(symbol) + str(" slow MACD: ") + str(symbolData.MACD.Slow.Current.Value)) # See console for Debug messages
self.Debug(str(symbol) + str(" fast MACD: ") + str(symbolData.MACD.Fast.Current.Value))
macd_signal = symbolData.MACD.Signal.Current.Value # This is just one of the MACD indicator data points
# The rolling window was declared in SymbolData class,
# now we save the datapoint we need to the rolling window.
# Remember, this is happening for every stock in our list
self.Data[symbol].MACDSignal.Add(macd_signal)
# And now we can reference the window index
latestMACDSignalValue = symbolData.MACDSignal[0]
self.Debug(str(symbol) + str(" latest MACD signal value is: ") + str(latestMACDSignalValue))
class SymbolData(object):
def __init__(self, symbol, windowSize):
self.Symbol = symbol
self.Bars = RollingWindow[IBaseDataBar](windowSize)
# The MACD indicator for our symbol
self.MACDSignal = RollingWindow[float](windowSize) # There may be a better way to do this, but this works
# Returns true if all the data in this instance is ready (indicators, rolling windows, ect...)
def IsReady(self):
return self.Bars.IsReady and self.MACD.IsReady