| Overall Statistics |
|
Total Trades 21390 Average Win 0.07% Average Loss -0.06% Compounding Annual Return 37.606% Drawdown 23.600% Expectancy 0.687 Net Profit 6304.328% Sharpe Ratio 1.51 Probabilistic Sharpe Ratio 88.605% Loss Rate 27% Win Rate 73% Profit-Loss Ratio 1.30 Alpha 0.311 Beta 0.22 Annual Standard Deviation 0.22 Annual Variance 0.048 Information Ratio 0.896 Tracking Error 0.261 Treynor Ratio 1.512 Total Fees $35145.27 |
'''
Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.2 (dynamic selector)
inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang, Miko M.
https://www.quantconnect.com/forum/discussion/10246/intersection-of-roc-comparison-using-out-day-approach/p1/comment-29043
Miko M version that dynamically selects top momentum stocks modified by Vladimir
'''
import numpy as np
# ------------------------------------------------------------------------------------------------
BONDS = ['TLT','TLH']; VOLA = 126; BASE_RET = 85; DV_N = 500; RETURN = 252; R_N = 10; LEV = 1.00;
# ------------------------------------------------------------------------------------------------
class ROC_Comparison_IN_OUT(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1)
self.SetEndDate(2021, 1, 7)
self.InitCash = 100000
self.SetCash(self.InitCash)
self.MKT = self.AddEquity("SPY", Resolution.Hour).Symbol
self.mkt = []
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
res = Resolution.Hour
self.STOCKS = [] # Selected using the universe selection
self.UniverseSettings.Resolution = res
self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in BONDS]
self.SLV = self.AddEquity('SLV', res).Symbol
self.GLD = self.AddEquity('GLD', res).Symbol
self.XLI = self.AddEquity('XLI', res).Symbol
self.XLU = self.AddEquity('XLU', res).Symbol
self.DBB = self.AddEquity('DBB', res).Symbol
self.UUP = self.AddEquity('UUP', res).Symbol
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP]
self.SetUniverseSelection(FineFundamentalUniverseSelectionModel(self.coarseSelector, self.fineSelector))
self.UniverseSettings.Resolution = Resolution.Minute
self.bull = 1
self.count = 0
self.outday = 0
self.wt = {}
self.real_wt = {}
self.universeMonth = -1
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 60),
self.daily_check)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120),
self.trade)
symbols = [self.MKT] + self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, VOLA + 1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(VOLA + 1):]
def daily_check(self):
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252)
#wait_days = int(vola * BASE_RET)
#period = int((1.0 - vola) * BASE_RET)
#r = self.history.pct_change(period).iloc[-1]
r = self.history.pct_change(int((1.0 - vola) * BASE_RET)).iloc[-1]
exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if exit:
self.bull = 0
self.outday = self.count
#if self.count >= self.outday + wait_days:
if self.count >= self.outday + int(vola * BASE_RET):
self.bull = 1
self.count += 1
def coarseSelector(self, coarse):
if self.Time.month == self.universeMonth:
return self.STOCKS
eqs = [x for x in coarse if (x.HasFundamentalData == True)]
dollar_volume_sorted = sorted(eqs, key=lambda x: x.DollarVolume, reverse = True)
top = dollar_volume_sorted[:DV_N]
top_eqs = [x.Symbol for x in top]
return top_eqs
def fineSelector(self, fine):
if self.Time.month == self.universeMonth:
return self.STOCKS
tech = [x for x in fine if x.AssetClassification.MorningstarSectorCode == MorningstarSectorCode.Technology]
selected_symbols = [str(x.Symbol) for x in tech]
hist = self.History(selected_symbols, RETURN + 1, Resolution.Daily)
o = hist['open'].unstack(level = 0)
scores = o.ix[-1] / o.ix[0]
top_eqs = scores.sort_values(ascending = False)[:R_N]
self.STOCKS = [self.Symbol(str(x)) for x in top_eqs.index]
self.universeMonth = self.Time.month
return self.STOCKS
def trade(self):
for sym in self.STOCKS:
if self.Securities[sym].IsTradable == False:
self.STOCKS.remove(sym)
for pi in self.Portfolio.Values:
eq = self.Symbol(str(pi.Symbol))
if eq not in self.STOCKS:
self.wt[eq] = 0.
for sec in self.STOCKS:
self.wt[sec] = LEV/len(self.STOCKS) if self.bull else 0;
for sec in self.BONDS:
self.wt[sec] = 0 if self.bull else LEV/len(self.BONDS);
for sec, weight in self.wt.items():
#if weight == 0 and self.Portfolio[sec].IsLong:
if weight == 0:
self.Liquidate(sec)
#elif weight != 0:
else:
self.SetHoldings(sec, weight)
def OnWeekEnd(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0]
self.Plot('Strategy Equity', self.MKT, mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))
self.Plot('Holdings', 'Target Leverage', LEV)