| Overall Statistics |
|
Total Trades 82 Average Win 0.69% Average Loss -0.52% Compounding Annual Return 15.955% Drawdown 2.300% Expectancy 0.470 Net Profit 10.395% Sharpe Ratio 1.858 Probabilistic Sharpe Ratio 84.880% Loss Rate 37% Win Rate 63% Profit-Loss Ratio 1.32 Alpha 0.109 Beta -0.021 Annual Standard Deviation 0.059 Annual Variance 0.003 Information Ratio 0.791 Tracking Error 0.187 Treynor Ratio -5.185 Total Fees $1430.14 Estimated Strategy Capacity $230000.00 Lowest Capacity Asset HYMC XEZF85YZ9C2T |
"""
Multi-Entry ML Liquidation Strategy using optimal take profit as a target
Last changes:
v0.4: Stable version with P&L target
v0.3: Adjusted extension formula
v0.2: Extension for take profit instead of profit and loss
v0.1: First working version
@version: 0.4
@creation date: 8/9/2022
"""
from AlgorithmImports import *
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from io import StringIO
from sklearn.neural_network import MLPRegressor
import indicators as idx
TICKERS_CSV = "https://drive.google.com/uc?export=download&id=1did0Sk3F9Sn5Il_nUX252jOB_n0UFqat"
DATE_COL = "Agreement Start Date"
SYMBOL_COL = "ticker"
AGG_OPS = {"open": "first", "close": "last",
"high": "max", "low": "min", "volume": "sum"}
SECS_PER_DAY = 24 * 60 * 60
class LiquidationBasicML(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 10, 1)
self.SetEndDate(2022, 6, 1)
self.benchmark = self.GetParameter("benchmark", "SPY")
self.capital = self.GetParameter("capital", 80000)
self.min_gap = self.GetParameter("min_gap", 0.15)
self.target_gain = self.GetParameter("target_gain", 0.01) # minimum return to label the p&l as a buy
self.SetCash(self.capital)
self.atm = self.get_atm()
self.atm_start = self.atm.index.get_level_values("time").min()
self.AddEquity(self.benchmark, Resolution.Minute)
self.SetBenchmark(self.benchmark)
self.last_update = datetime(2000, 1, 1)
self.last_training = datetime(2000, 1, 1)
self.gaplist, self.features, self.targets = None, None, None
self.model = None
self.pos_size = 0.1 # TODO: How to define an edge with regressors?
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
every_day = self.DateRules.EveryDay(self.benchmark)
at = self.TimeRules.At
self.Train(every_day, at(0, 0), self.train_model)
self.Schedule.On(every_day, at(9, 31), self.update_gaplist)
self.Schedule.On(every_day, at(9, 45), self.trade) # Can trade up or down
self.Schedule.On(every_day, at(10, 30), self.exit_trades)
self.Schedule.On(every_day, at(15, 55), self.liquidate)
def train_model(self):
days_since_training = (self.Time - self.last_training).days
if self.features is None \
or (days_since_training <= 30 and self.pos_size > 0): return
if self.model is None:
self.model = MLPRegressor(hidden_layer_sizes=(32, 32),
warm_start=True,
early_stopping=True)
idx = self.features.index.intersection(self.targets.index) # Removing features without matching targets
self.features = self.features.loc[idx]
self.targets = self.targets.loc[idx]
self.model.fit(self.features, self.targets)
self.last_training = self.Time
self.print(f"Training Points: {len(self.features)} Edge: {self.pos_size:.1%}")
self.Plot("ML", "Edge", self.pos_size)
def trade(self):
self.update_features()
x_pred = self.features.query("time == @self.Time.date()") # TODO: Review indexing
if self.model is None or len(x_pred) == 0: return
x_pred = x_pred.groupby("symbol").head(1) # Get last calculated feature
x_pred.index = x_pred.index.droplevel("time")
y_pred = pd.Series(self.model.predict(x_pred), index=x_pred.index)
for sym, pred in y_pred.items():
price = self.Portfolio[sym].Price
qty = self.CalculateOrderQuantity(sym, -self.pos_size)
if pred >= self.target_gain:
take_profit = price * (1 - pred)
self.LimitOrder(sym, qty, price)
self.LimitOrder(sym, -qty, take_profit)
self.print(f"Trading {pred:.1%} of {sym}")
def exit_trades(self):
self.Transactions.CancelOpenOrders()
for sym in self.ActiveSecurities.Keys:
qty = self.Portfolio[sym].Quantity
if qty != 0: self.LimitOrder(sym, -qty, self.Portfolio[sym].Price)
self.update_targets()
def liquidate(self):
self.Transactions.CancelOpenOrders()
self.Liquidate()
def update_features(self):
new_features = self.gaplist.query("time > @self.last_update")
now = self.Time
entry_hr, entry_mn = now.hour, now.minute
qb = QuantBook()
minute_bars, fcf_bars, cash_bars = [], [], []
for symbol, day in new_features.index:
minute_bars += [self.History([symbol],
day.replace(hour=7, minute=1),
day.replace(hour=entry_hr, minute=entry_mn),
Resolution.Minute)]
fcf_bars += [qb.GetFundamental([self.Symbol(symbol)],
"FinancialStatements.CashFlowStatement.FreeCashFlow",
day, day)]
cash_bars += [qb.GetFundamental([self.Symbol(symbol)],
"FinancialStatements.BalanceSheet.CashAndCashEquivalents",
day, day)]
try:
minute_bars = pd.concat(minute_bars)
pm_bar = agg_bars(minute_bars, "07:01", "09:30")
opening_bar = agg_bars(minute_bars, "09:31", f"{entry_hr}:{entry_mn}")
fcf_bars = pd.concat(fcf_bars)
fcf_bars = fcf_bars.unstack().dropna().apply(lambda x: x.ThreeMonths)
cash_bars = pd.concat(cash_bars)
cash_bars = cash_bars.unstack().dropna().apply(lambda x: x.ThreeMonths)
except (KeyError, ValueError) as e:
self.print(f"Update Features Error: {e}")
return
new_features = new_features.join(opening_bar.add_prefix("opening_"))
new_features["opening_range"] = opening_bar.eval("(close-low)/(high-low)")
new_features["pm_volume_usd"] = pm_bar.eval("close * volume")
last_atm = self.atm.query("time <= @self.Time").groupby("symbol").last()
new_features = new_features.join(last_atm[["atm_date", "atm_size", "atm_offer"]])
seconds_since_atm = (self.Time.timestamp() - new_features["atm_date"])
new_features["atm_days"] = seconds_since_atm / SECS_PER_DAY
opening_bars = idx.filter_bars(minute_bars, "09:31", f"{entry_hr}:{entry_mn}")
divergence = opening_bars["close"] / idx.intra_vwap(opening_bars) - 1
grouper = [pd.Grouper(level="symbol"), pd.Grouper(level="time", freq="1D")]
new_features["max_divergence"] = divergence.groupby(grouper).max()
new_features["min_divergence"] = divergence.groupby(grouper).min()
new_features["runway_cash"] = cash_bars / fcf_bars # CashAndCashEquivalents / FreeCashFlow
new_features["seconds_to_exit"] = (now.replace(hour=10, minute=30) - now).seconds
new_features.eval("pm_volume_atm = pm_volume_usd / atm_size", inplace=True)
self.features = pd.concat([new_features.dropna(), self.features])
self.features = self.features[~self.features.index.duplicated(keep='first')]
self.features["gap_days"] = self.features.groupby(["symbol", "atm_date"]).cumcount()
self.print(f"Stored {len(new_features)} new features, total: {len(self.features)}")
self.Log(new_features.to_string())
def update_targets(self):
new_features = self.features.query("time > @self.last_update")
exit_hr, exit_mn = self.Time.hour, self.Time.minute
minute_bars = [self.History([symbol],
day.replace(hour=exit_hr, minute=exit_mn)-timedelta(minutes=1),
day.replace(hour=exit_hr, minute=exit_mn),
Resolution.Minute)
for symbol, day in new_features.index]
try:
minute_bars = pd.concat(minute_bars)
target_bar = agg_bars(minute_bars, "09:30", f"{exit_hr}:{exit_mn}")
except (KeyError, ValueError) as e:
self.print(f"Update Targets Error: {e}")
return
new_targets = target_bar.eval("1 - low/open") # Return of a short with exit on LOD
self.targets = pd.concat([new_targets.dropna(), self.targets])
self.targets = self.targets[~self.targets.index.duplicated(keep='first')]
self.last_update = self.Time
self.print(f"Stored {len(new_targets)} new targets, total: {len(self.targets)}")
def update_gaplist(self):
last_update = self.atm_start if self.gaplist is None \
else self.gaplist.index.get_level_values("time").max()
last_valid_atm = last_update - timedelta(365)
valid_atm = self.atm.query("(time >= @last_valid_atm) and (time <= @self.Time)")
tickers = valid_atm.index.get_level_values("symbol").unique().tolist()
day_bars = self.History(tickers, last_update, self.Time, Resolution.Daily)
shifted_time_idx = day_bars.index.levels[1].shift(-1, freq="D")
day_bars.index = day_bars.index.set_levels(shifted_time_idx, level=1)
today_start = self.Time.replace(hour=9, minute=30)
if self.Time > today_start: # adding manually the last day bar if missing
last_day_bars = self.History(tickers, today_start, self.Time,
Resolution.Minute)
last_day_bar = agg_bars(last_day_bars, "09:31", "16:00")
day_bars = pd.concat([day_bars, last_day_bar])
yesterday_close = day_bars["close"].groupby("symbol").shift(1)
gaps = day_bars["open"] / yesterday_close - 1
new_gaplist = gaps[gaps >= self.min_gap].to_frame("gap")
self.gaplist = pd.concat([new_gaplist, self.gaplist])
def get_atm(self):
csv = StringIO(self.Download(TICKERS_CSV))
atms = pd.read_csv(csv, parse_dates=[DATE_COL],
dayfirst=True, thousands=",")
atms.eval("atm_offer = OfferingType == 'ATM'", inplace=True)
atms = atms.rename(columns={DATE_COL: "time", SYMBOL_COL: "symbol",
"Total ATM Capacity": "atm_size"})
[self.AddEquity(s, Resolution.Minute, extendedMarketHours=True)
for s in atms["symbol"].unique()]
atms["symbol"] = atms["symbol"].apply(lambda x: str(self.Symbol(x).ID))
atms["atm_date"] = atms["time"].apply(lambda x: x.timestamp())
return atms.set_index(["symbol", "time"])
def print(self, msg):
self.Debug(f"{self.Time} {msg}")
def agg_bars(minute_bars, start_time, end_time):
grouper = [pd.Grouper(level="symbol"), pd.Grouper(level="time", freq="1D")]
filtered_bars = idx.filter_bars(minute_bars, start_time, end_time)
return filtered_bars.groupby(grouper).agg(AGG_OPS)