| Overall Statistics |
|
Total Trades 379 Average Win 1.03% Average Loss -0.83% Compounding Annual Return 12.481% Drawdown 24.400% Expectancy 0.531 Net Profit 119.162% Sharpe Ratio 0.797 Loss Rate 31% Win Rate 69% Profit-Loss Ratio 1.23 Alpha 0.355 Beta -12.562 Annual Standard Deviation 0.152 Annual Variance 0.023 Information Ratio 0.675 Tracking Error 0.152 Treynor Ratio -0.01 Total Fees $613.73 |
from math import ceil
import numpy as np
import pandas as pd
import scipy as sp
### <summary>
### Demonstration of how to estimate constituents of QC500 index based on the company fundamentals
### The algorithm creates a default tradable and liquid universe containing 500 US equities
### which are chosen at the first trading day of each month.
### </summary>
class ConstituentsQC500GeneratorAlgorithm(QCAlgorithm):
def Initialize(self):
'''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
self.SetStartDate(2012, 1, 1) #Set Start Date
self.SetEndDate(2018, 9, 1) #Set End Date
self.SetCash(100000) #Set Strategy Cash
self.UniverseSettings.Resolution = Resolution.Daily
# this add universe method accepts two parameters:
# - coarse selection function: accepts an IEnumerable<CoarseFundamental> and returns an IEnumerable<Symbol>
# - fine selection function: accepts an IEnumerable<FineFundamental> and returns an IEnumerable<Symbol>
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.spy = self.AddEquity("SPY", Resolution.Daily)
self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.At(0, 0), self.monthly_rebalance)
self.num_coarse = 1000
self.num_fine = 500
self.num_short_term = 60
self.num_long_term = 30
self.dollar_volume = {}
self.rebalance = True
self.ready = False
self.symbolDataDict = {}
self.short_term_indicator = 252 * 3
self.long_term_indicator = 252 * 10
def CoarseSelectionFunction(self, coarse):
if not self.rebalance: return []
# The stocks must have fundamental data
# The stock must have positive previous-day close price
# The stock must have positive volume on the previous trading day
filtered = [x for x in coarse if x.HasFundamentalData
and x.Volume > 0
and x.Price > 0]
# sort the stocks by dollar volume and take the top 1000
sort_filtered = sorted(filtered, key=lambda x: x.DollarVolume, reverse=True)[:self.num_coarse]
for i in sort_filtered:
self.dollar_volume[i.Symbol.Value] = i.DollarVolume
# return the symbol objects our sorted collection
return [x.Symbol for x in sort_filtered]
def FineSelectionFunction(self, fine):
if not self.rebalance: return []
# The company's headquarter must in the U.S.
# The stock must be traded on either the NYSE or NASDAQ
# At least half a year since its initial public offering
# The stock's market cap must be greater than 500 million
filtered_fine = [x for x in fine if (x.CompanyReference.CountryId == "USA")
and (x.CompanyReference.PrimaryExchangeID == "NYS" or x.CompanyReference.PrimaryExchangeID == "NAS")
and ((self.Time - x.SecurityReference.IPODate).days > 180)
and x.EarningReports.BasicAverageShares.ThreeMonths * (x.EarningReports.BasicEPS.TwelveMonths*x.ValuationRatios.PERatio) > 5e8]
count = len(filtered_fine)
if count == 0: return []
# select stocks with top dollar volume in every single sector
for i in filtered_fine:
i.DollarVolume = self.dollar_volume[i.Symbol.Value]
percent = float(self.num_fine/count)
group_by_code = {}
top_list = []
for code in ["N", "M", "U", "T", "B", "I"]:
group_by_code[code] = list(filter(lambda x: x.CompanyReference.IndustryTemplateCode == code, filtered_fine))
top = sorted(group_by_code[code], key=lambda x: x.DollarVolume, reverse = True)[:ceil(len(group_by_code[code])*percent)]
top_list.append(top)
joined_list = top_list[0]
for ls in top_list[1:]:
joined_list += ls
self.symbols = [x.Symbol for x in joined_list][:self.num_fine]
self.Log(",".join(sorted(i.Value for i in self.symbols)))
self.ready = True
return self.symbols
def OnData(self, data):
pass
def monthly_rebalance(self):
now = self.Time
if now.month == 1:
self.rebalance = True
self.ready = False
def OnData(self, data):
if self.ready:
self.ready = False
self.rebalance = False
for symbol, symbolData in self.symbolDataDict.items():
# update the indicator value for securities already in the portfolio
if symbol not in self.addedSymbols:
symbolData.MOMST.Update(IndicatorDataPoint(symbol, self.Time, self.Securities[symbol].Close))
# liquidate removed securities
if symbol in self.removedSymbols:
self.Liquidate(symbol)
self.addedSymbols = []
self.removedSymbols = []
sorted_symbolData = sorted(self.symbolDataDict, key=lambda x: self.symbolDataDict[x].MOMST.Current.Value)
long_stocks = sorted_symbolData[:60]
for symbol in long_stocks:
self.symbolDataDict[symbol].MOMLT.Update(IndicatorDataPoint(symbol, self.Time, self.Securities[symbol].Close))
sorted_symbolData2 = sorted(long_stocks, key=lambda x: self.symbolDataDict[x].MOMLT.Current.Value)
buy_stocks = sorted_symbolData2[:30]
for long_stock in buy_stocks:
self.SetHoldings(long_stock, 1/len(buy_stocks))
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
# liquidate stocks not in the list
for i in stocks_invested:
if i not in buy_stocks:
self.Liquidate(i)
def OnSecuritiesChanged(self, changes):
# clean up data for removed securities
self.removedSymbols = [x.Symbol for x in changes.RemovedSecurities]
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataDict.pop(removed.Symbol, None)
# warm up the indicator with history price for newly added securities
self.addedSymbols = [x.Symbol for x in changes.AddedSecurities if x.Symbol.Value != "SPY"]
history = self.History(self.addedSymbols, self.long_term_indicator+1, Resolution.Daily)
for symbol in self.addedSymbols:
if symbol not in self.symbolDataDict.keys():
symbolData = SymbolData(symbol, self.short_term_indicator, self.long_term_indicator)
self.symbolDataDict[symbol] = symbolData
if str(symbol) in history.index:
symbolData.WarmUpIndicator(history.loc[str(symbol)])
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback, lookbacklong):
self.symbol = symbol
self.MOMST = Momentum(lookback)
self.MOMLT = Momentum(lookbacklong)
def WarmUpIndicator(self, history):
# warm up the Momentum indicator with the history request
for tuple in history.itertuples():
item = IndicatorDataPoint(self.symbol, tuple.Index, float(tuple.close))
self.MOMST.Update(item)
self.MOMLT.Update(item)