| Overall Statistics |
|
Total Trades 19 Average Win 11.01% Average Loss -7.00% Compounding Annual Return 1.324% Drawdown 37.500% Expectancy 0.000 Net Profit 3.656% Sharpe Ratio 0.148 Probabilistic Sharpe Ratio 4.430% Loss Rate 61% Win Rate 39% Profit-Loss Ratio 1.57 Alpha 0.037 Beta -0.081 Annual Standard Deviation 0.204 Annual Variance 0.042 Information Ratio -0.203 Tracking Error 0.264 Treynor Ratio -0.372 Total Fees $2358.13 Estimated Strategy Capacity $12000000.00 Lowest Capacity Asset AMD R735QTJ8XC9X Portfolio Turnover 1.88% |
# region imports
from AlgorithmImports import *
from collections import deque
from statsmodels.tsa.stattools import acf
# endregion
class SmoothLightBrownDolphin(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 7, 10) # Set Start Date
self.SetStartDate(2020, 7, 20) # Set Start Date
self.SetCash(2000000) # Set Strategy Cash
self.sma = {}
self.acf = {}
# 1. Create the Autocorrelation indicator for each security
self.amd = self.AddEquity("AMD", Resolution.Minute).Symbol
self.sma[self.amd], self.acf[self.amd] = self.InitIndicators(self.amd)
self.amzn = self.AddEquity("AMZN", Resolution.Minute).Symbol
self.sma[self.amzn], self.acf[self.amzn] = self.InitIndicators(self.amzn)
self.roku = self.AddEquity("ROKU", Resolution.Minute).Symbol
self.sma[self.roku], self.acf[self.roku] = self.InitIndicators(self.roku)
self.jpm = self.AddEquity("JPM", Resolution.Minute).Symbol
self.sma[self.jpm], self.acf[self.jpm] = self.InitIndicators(self.jpm)
self.CanTrade = set()
self.MyInsights = []
self.AddAlpha(CustomEmaCrossAlphaModel(self))
self.SetWarmup(40)
def InitIndicators(self,symbol):
sma = SimpleMovingAverage('sma_'+symbol.Value,20)
self.RegisterIndicator(symbol, sma, Resolution.Daily)
acf_ind = CustomACF('ACF_'+symbol.Value,symbol,120,3)
self.RegisterIndicator(symbol, acf_ind, Resolution.Daily)
acf_ind.warmUpIndicator(self)
return sma, acf_ind
def OnData(self, data: Slice):
if not self.Portfolio.Invested:
for k,v in self.acf.items():
if not v.IsReady:
return
# # 2. One each indicator is ready get the stock with the maximun acf
# symbol, acf_max = sorted([(k,v.MaxValue) for k,v in self.acf.items()],key= lambda x: x[-1])[-1]
# # self.SetHoldings(symbol,0.5)
# self.CanTrade.add(symbol)
# self.Debug(f'The selected Maximun symbol was {symbol.Value}')
# 3. One each indicator is ready get the stock with the minimum acf
symbol, acf_min = sorted([(k,v.MinValue) for k,v in self.acf.items()],key= lambda x: x[-1])[0]
self.CanTrade.add(symbol)
# self.SetHoldings(symbol,0.5)
self.Debug(f'The selected Minimum symbol was {symbol.Value}')
if self.MyInsights:
for insight in self.MyInsights:
percent = 0.5 if insight.Direction == InsightDirection.Up else -0.5
self.SetHoldings(insight.Symbol,percent)
self.MyInsights = []
# 1. Create the Autocorrelation indicator for each security
class CustomACF(PythonIndicator):
def __init__(self, name, symbol, period, nlags):
self.Name = name
self.Symbol = symbol
self.WarmUpPeriod = period
self.Time = datetime.min
self.Value = 0
self.Acf = None
self.Price = deque(maxlen=period)
self.LastTime = datetime.min + timedelta(minutes=1)
self.nlags = nlags
def warmUpIndicator(self, algorithm):
history = algorithm.History(self.Symbol, self.WarmUpPeriod, Resolution.Daily).loc[self.Symbol]
for idx, row in history.iterrows():
self.Price.append(row.close)
@property
def IsReady(self):
return len(self.Price) == self.Price.maxlen
@property
def CurrentACF(self):
if len(self.Price) == self.Price.maxlen:
if self.Time == self.LastTime:
return self.Acf
self.LastTime = self.Time
self.Acf = acf(self.Price, nlags=self.nlags)
return self.Acf
return None
@property
def MaxValue(self):
if len(self.Price) == self.Price.maxlen:
return max(self.CurrentACF)
@property
def MinValue(self):
if len(self.Price) == self.Price.maxlen:
return min(self.CurrentACF)
@property
def AverageValue(self):
if len(self.Price) == self.Price.maxlen:
return np.mean(self.CurrentACF)
def Update(self, input: BaseData) -> bool:
self.Price.append(input.Close)
self.Time = input.Time
return len(self.Price) == self.Price.maxlen
## ----------------- Modified SMA model
class CustomEmaCrossAlphaModel(AlphaModel):
'''Alpha model that uses an EMA cross to create insights'''
def __init__(self,
main_algo,
weight = 0.5,
fastPeriod = 20,
slowPeriod = 40,
resolution = Resolution.Daily):
'''Initializes a new instance of the EmaCrossAlphaModel class
Args:
fastPeriod: The fast EMA period
slowPeriod: The slow EMA period'''
self.main_algo = main_algo
self.fastPeriod = fastPeriod
self.slowPeriod = slowPeriod
self.resolution = resolution
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.Fast.IsReady and symbolData.Slow.IsReady and symbol in self.main_algo.CanTrade:
if symbolData.FastIsOverSlow:
if symbolData.Slow > symbolData.Fast:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down,weight=0.5))
self.main_algo.MyInsights.append(insights[-1])
elif symbolData.SlowIsOverFast:
if symbolData.Fast > symbolData.Slow:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up,weight=0.5))
self.main_algo.MyInsights.append(insights[-1])
symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = SymbolData(added, self.fastPeriod, self.slowPeriod, algorithm, self.resolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
# a security that was already initialized was re-added, reset the indicators
symbolData.Fast.Reset()
symbolData.Slow.Reset()
for removed in changes.RemovedSecurities:
data = self.symbolDataBySymbol.pop(removed.Symbol, None)
if data is not None:
# clean up our consolidators
data.RemoveConsolidators()
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security, fastPeriod, slowPeriod, algorithm, resolution):
self.Security = security
self.Symbol = security.Symbol
self.algorithm = algorithm
self.FastConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
self.SlowConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.FastConsolidator)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.SlowConsolidator)
# create fast/slow EMAs
self.Fast = SimpleMovingAverage(security.Symbol, fastPeriod)
self.Slow = SimpleMovingAverage(security.Symbol, slowPeriod)
algorithm.RegisterIndicator(security.Symbol, self.Fast, self.FastConsolidator);
algorithm.RegisterIndicator(security.Symbol, self.Slow, self.SlowConsolidator);
algorithm.WarmUpIndicator(security.Symbol, self.Fast, resolution);
algorithm.WarmUpIndicator(security.Symbol, self.Slow, resolution);
# True if the fast is above the slow, otherwise false.
# This is used to prevent emitting the same signal repeatedly
self.FastIsOverSlow = False
def RemoveConsolidators(self):
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.FastConsolidator)
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.SlowConsolidator)
@property
def SlowIsOverFast(self):
return not self.FastIsOverSlow