| Overall Statistics |
|
Total Trades 952 Average Win 0.12% Average Loss -0.41% Compounding Annual Return -99.764% Drawdown 99.900% Expectancy -0.995 Net Profit -99.859% Sharpe Ratio -0.765 Probabilistic Sharpe Ratio 0.000% Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0.29 Alpha -0.931 Beta -0.142 Annual Standard Deviation 1.202 Annual Variance 1.445 Information Ratio -0.688 Tracking Error 1.22 Treynor Ratio 6.454 Total Fees $952.00 Estimated Strategy Capacity $9600000.00 Lowest Capacity Asset GHSI X3CY8FI8QOV9 |
import pandas as pd
import numpy as np
from AlgorithmImports import *
# endregion
from QuantConnect.Indicators import ExponentialMovingAverage
class QEMAAlphaModel(AlphaModel):
openingBar = None
currentBar = None
"""
This class emits insights to hold a long (short) position after the chikou line of a
security's Ichimoku Cloud crosses over (under) the top (bottom) of the cloud.
"""
def __init__(self, vfastPeriod = 5, fastPeriod = 9, midPeriod = 21, slowPeriod = 55, resolution = Resolution.Minute, portfolioBias = PortfolioBias.Long):
'''Initializes a new instance of the EmaCrossAlphaModel class
Args:
fastPeriod: The fast EMA period
slowPeriod: The slow EMA period'''
self.vfastPeriod = vfastPeriod
self.fastPeriod = fastPeriod
self.midPeriod = midPeriod
self.slowPeriod = slowPeriod
self.resolution = resolution
#consFiveMin = TradeBarConsolidator(5)
#consFiveMin.DataConsolidated += self.OnDataConsolidated
#self.SubscriptionManager.AddConsolidator(symbol, consFiveMin)
self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), slowPeriod)
self.symbolDataBySymbol = {}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{},{})'.format(self.__class__.__name__, vfastPeriod, fastPeriod, midPeriod, slowPeriod, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
if symbolData.vFast.IsReady and symbolData.Slow.IsReady:
if symbolData.vFast == symbolData.Fast:
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down))
if (symbolData.Fast > symbolData.Mid and symbolData.Mid > symbolData.Slow):
insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
for added in changes.AddedSecurities:
symbolData = self.symbolDataBySymbol.get(added.Symbol)
if symbolData is None:
symbolData = SymbolData(added, self.vfastPeriod, self.fastPeriod, self.midPeriod, self.slowPeriod, algorithm, self.resolution)
self.symbolDataBySymbol[added.Symbol] = symbolData
else:
# a security that was already initialized was re-added, reset the indicators
symbolData.vFast.Reset()
symbolData.Fast.Reset()
symbolData.Mid.Reset()
symbolData.Slow.Reset()
for removed in changes.RemovedSecurities:
data = self.symbolDataBySymbol.pop(removed.Symbol, None)
if data is not None:
# clean up our consolidators
data.RemoveConsolidators()
def OnDataConsolidated(self, bar):
self.currentBar = bar
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, security, vfastPeriod, fastPeriod, midPeriod, slowPeriod, algorithm, resolution):
self.Security = security
self.Symbol = security.Symbol
self.algorithm = algorithm
self.Resolution = resolution
resolution = timedelta(minutes=5)
self.vFastConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
self.FastConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
self.MidConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
self.SlowConsolidator = algorithm.ResolveConsolidator(security.Symbol, resolution)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.vFastConsolidator)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.FastConsolidator)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.MidConsolidator)
algorithm.SubscriptionManager.AddConsolidator(security.Symbol, self.SlowConsolidator)
# create fast/slow EMAs
self.vFast = ExponentialMovingAverage(security.Symbol, vfastPeriod, ExponentialMovingAverage.SmoothingFactorDefault(vfastPeriod))
self.Fast = ExponentialMovingAverage(security.Symbol, fastPeriod, ExponentialMovingAverage.SmoothingFactorDefault(fastPeriod))
self.Mid = ExponentialMovingAverage(security.Symbol, midPeriod, ExponentialMovingAverage.SmoothingFactorDefault(midPeriod))
self.Slow = ExponentialMovingAverage(security.Symbol, slowPeriod, ExponentialMovingAverage.SmoothingFactorDefault(slowPeriod))
algorithm.RegisterIndicator(security.Symbol, self.vFast, self.vFastConsolidator);
algorithm.RegisterIndicator(security.Symbol, self.Fast, self.FastConsolidator);
algorithm.RegisterIndicator(security.Symbol, self.Mid, self.MidConsolidator);
algorithm.RegisterIndicator(security.Symbol, self.Slow, self.SlowConsolidator);
algorithm.WarmUpIndicator(security.Symbol, self.vFast, resolution);
algorithm.WarmUpIndicator(security.Symbol, self.Fast, resolution);
algorithm.WarmUpIndicator(security.Symbol, self.Mid, resolution);
algorithm.WarmUpIndicator(security.Symbol, self.Slow, resolution);
# True if the fast is above the slow, otherwise false.
# This is used to prevent emitting the same signal repeatedly
self.FastIsOverSlow = True
def RemoveConsolidators(self):
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.vFastConsolidator)
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.FastConsolidator)
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.MidConsolidator)
self.algorithm.SubscriptionManager.RemoveConsolidator(self.Security.Symbol, self.SlowConsolidator)
@property
def SlowIsOverFast(self):
return not self.FastIsOverSlowfrom AlgorithmImports import *
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from alphamodel import QEMAAlphaModel
from risk import MaxDrawdownPercentModel
class QEMA_AlgorithmUniverse(QCAlgorithm):
def Initialize(self):
self.SetTimeZone(TimeZones.NewYork)
self.SetStartDate(2021, 9, 20)
self.SetEndDate(2022, 10, 20)
self.SetCash(1000)
self.AddUniverse(self.SelectCoarse)
self.SetAlpha(QEMAAlphaModel(portfolioBias = PortfolioBias.Long))
self.SetWarmup(55)
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(portfolioBias = PortfolioBias.Long))
self.SetRiskManagement(MaxDrawdownPercentModel())
self.SetExecution(ImmediateExecutionModel())
self.averages = {}
self.SetWarmup(200)
def SelectCoarse(self, universe):
"""
Coarse universe selection is called each day at midnight.
Returns the symbols that have fundamental data.
"""
selected = []
universe = sorted(universe, key=lambda c: c.Volume, reverse=True)
universe = [c for c in universe if c.Price < 50][:100]
# Create a loop to use all the coarse data:
for coarse in universe:
symbol = coarse.Symbol
if symbol not in self.averages:
history = self.History(symbol, 200, Resolution.Daily)
self.averages[symbol] = SelectionData(history)
self.averages[symbol].update(self.Time, coarse.AdjustedPrice)
# Check if EMA50 > EMA200 and if so, append the symbol to the selected list
if self.averages[symbol].unifast > self.averages[symbol].unislow:
if self.averages[symbol].is_ready():
selected.append(symbol)
return selected[:20]
class SelectionData():
def __init__(self, history):
self.unislow = SimpleMovingAverage(200)
self.unifast = SimpleMovingAverage(50)
for bar in history.itertuples():
self.unifast.Update(bar.Index[1], bar.close)
self.unislow.Update(bar.Index[1], bar.close)
def is_ready(self):
return self.unislow.IsReady
def update(self, time, price):
self.unifast.Update(time, price)
self.unislow.Update(time, price)
#region imports
from AlgorithmImports import *
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MaxDrawdownPercentModel(RiskManagementModel):
'''Provides an implementation of IRiskManagementModel that limits the drawdown of the portfolio to the specified percentage.'''
def __init__(self, maximumDrawdownPercent = 0.025, isTrailing = False):
'''Initializes a new instance of the MaximumDrawdownPercentPortfolio class
Args:
maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with starting value, defaults to 5% drawdown</param>
isTrailing: If "false", the drawdown will be relative to the starting value of the portfolio.
If "true", the drawdown will be relative the last maximum portfolio value'''
self.maximumDrawdownPercent = -abs(maximumDrawdownPercent)
self.isTrailing = isTrailing
self.initialised = False
self.portfolioHigh = 0
def ManageRisk(self, algorithm, targets):
'''Manages the algorithm's risk at each time step
Args:
algorithm: The algorithm instance
targets: The current portfolio targets to be assessed for risk'''
currentValue = algorithm.Portfolio.TotalPortfolioValue
if not self.initialised:
self.portfolioHigh = currentValue # Set initial portfolio value
self.initialised = True
# Update trailing high value if in trailing mode
if self.isTrailing and self.portfolioHigh < currentValue:
self.portfolioHigh = currentValue
return [] # return if new high reached
pnl = self.GetTotalDrawdownPercent(currentValue)
if pnl < self.maximumDrawdownPercent and len(targets) != 0:
self.initialised = False # reset the trailing high value for restart investing on next rebalcing period
return [ PortfolioTarget(target.Symbol, 0) for target in targets ]
return []
def GetTotalDrawdownPercent(self, currentValue):
return (float(currentValue) / float(self.portfolioHigh)) - 1.0