Overall Statistics
Total Orders
0
Average Win
0%
Average Loss
0%
Compounding Annual Return
0%
Drawdown
0%
Expectancy
0
Start Equity
30000.00
End Equity
30000
Net Profit
0%
Sharpe Ratio
0
Sortino Ratio
0
Probabilistic Sharpe Ratio
0%
Loss Rate
0%
Win Rate
0%
Profit-Loss Ratio
0
Alpha
0
Beta
0
Annual Standard Deviation
0
Annual Variance
0
Information Ratio
-0.416
Tracking Error
0.379
Treynor Ratio
0
Total Fees
$0.00
Estimated Strategy Capacity
$0
Lowest Capacity Asset
Portfolio Turnover
0%
from AlgorithmImports import *
import numpy as np
import pandas as pd
import random
from collections import defaultdict, deque
import pickle
import base64
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.preprocessing import RobustScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

class Config:
    def __init__(self, algorithm):
        # Project requirement and constraints configurable parameters section
        self.mode = "training"
        self.start_date = datetime(2019, 1, 1)
        self.end_date = datetime(2025, 3, 31)  # Training period
        self.initial_cash = 30000
        self.commission_rate = float(algorithm.GetParameter("commission_rate") or 0.001)
        self.slippage = float(algorithm.GetParameter("slippage") or 0.0)
        self.allocation = 0.2
        self.benchmark_symbol = "BTCUSDT"
        self.trading_symbol = "ETHUSDT"
        self.exchange = algorithm.GetParameter("exchange", "binance")
        self.resolution_training = Resolution.Daily
        self.model_version = algorithm.GetParameter("model_version", "v01")
        self.random_seed = int(algorithm.GetParameter("random_seed", "168") or 42)
        # end - Project requirement and constraints configurable parameters

        # Daily trading strategy parameters
        self.trend_confirmation_period = 3
        self.profit_target_pct = 0.03
        self.stop_loss_pct = 0.02

        # State configuration 
        self.state_config = {
            'price_bins': 12,
            'volume_bins': 8,
            'rsi_bins': 6,
            'macd_bins': 5,
            'sma_cross': True,
            'volatility_bins': 4,
            'trend_strength_bins': 5,
            'price_level_bins': 7
        }
        
        # RL parameters
        self.learning_rate = 0.05
        self.discount_factor = 0.95
        self.epsilon = 1.0
        self.epsilon_min = 0.05
        self.epsilon_decay = 0.995
        self.episodes = 15
        self.min_avg_reward = -0.2
        
        # MBPO parameters
        self.model_rollout_length = 3
        self.model_train_freq = 30
        self.synthetic_data_ratio = 2
        self.min_real_samples = 300
        self.replay_buffer_size = 8000
        self.patience = 6
        self.min_improvement = 0.0001
        self.min_training_days = 100
        self.warmup_period = 100
        self.reward_scaling = 10.0
        self.log_frequency = 1
        self.max_consecutive_failures = 5
        self.max_consecutive_negative_rewards = 8
        self.max_failed_model_updates = 4
        
        # Indicator parameters
        self.sma_short_period = int(algorithm.GetParameter("sma_short") or 20)
        self.sma_long_period = int(algorithm.GetParameter("sma_long") or 60)
        self.ema_short_period = 9
        self.rsi_period = 14
        # For the revised signal, we will use RSI relative to 50 (rather than extremes)
        self.rsi_overbought = 50  
        self.rsi_oversold = 50    
        self.macd_fast = 12
        self.macd_slow = 26
        self.macd_signal = 9
        
        # Backtest recommendation thresholds
        self.success_rate_threshold = 0.52  
        self.sharpe_ratio_threshold = 1.0   
        self.strategy_accuracy_threshold = 0.48 
        
    def get_market(self):
        exchange_key = self.exchange.lower()
        if exchange_key == "binance":
            return Market.Binance
        elif exchange_key in ["coinbase", "gdax"]:
            return Market.GDAX
        elif exchange_key == "bitfinex":
            return Market.Bitfinex
        elif exchange_key == "kraken":
            return Market.Kraken
        return Market.Binance
        
    def get_model_prefix(self):
        return f"{self.model_version}_{self.random_seed}"

class DailyTradingModel:
    def __init__(self, config):
        self.config = config
        # Price data
        self.close_prices = []
        self.high_prices = []
        self.low_prices = []
        self.volume = []
        self.daily_returns = []
        
        # Indicators
        self.sma_short = []
        self.sma_long = []
        self.ema_short = []
        self.rsi = []
        self.macd = []
        self.macd_signal = []
        self.macd_hist = []
        
        # Analysis
        self.volatility_history = []
        self.support_levels = []
        self.resistance_levels = []
        self.trend_direction = 0  # -1: down, 0: sideways, 1: up
        self.trend_strength = 0   # 0-10 scale

        # For RSI calculation
        self.avg_gain = None
        self.avg_loss = None

    def update(self, price, high, low, volume):
        self.close_prices.append(price)
        self.high_prices.append(high)
        self.low_prices.append(low)
        self.volume.append(volume)
        
        if len(self.close_prices) > 1:
            daily_return = (price - self.close_prices[-2]) / self.close_prices[-2]
            self.daily_returns.append(daily_return)
        else:
            self.daily_returns.append(0)
            
        if len(self.close_prices) >= 20:
            recent_prices = self.close_prices[-20:]
            self.volatility_history.append(np.std(recent_prices) / np.mean(recent_prices))
        else:
            self.volatility_history.append(0)
            
        self._update_indicators()
        self._update_trend_analysis()
        self._update_support_resistance()
    
    def _update_indicators(self):
        closes = np.array(self.close_prices)
        if len(closes) >= self.config.sma_short_period:
            self.sma_short.append(np.mean(closes[-self.config.sma_short_period:]))
        else:
            self.sma_short.append(closes[-1] if closes.size > 0 else 0)
            
        if len(closes) >= self.config.sma_long_period:
            self.sma_long.append(np.mean(closes[-self.config.sma_long_period:]))
        else:
            self.sma_long.append(closes[-1] if closes.size > 0 else 0)
        
        self._calculate_ema(closes, self.ema_short, self.config.ema_short_period)
        self._calculate_rsi(closes)
        self._calculate_macd(closes)
    
    def _calculate_ema(self, prices, ema_list, period):
        if len(prices) == 0:
            ema_list.append(0)
            return
        if len(ema_list) == 0:
            if len(prices) >= period:
                ema_list.append(np.mean(prices[-period:]))
            else:
                ema_list.append(prices[-1])
            return
        multiplier = 2 / (period + 1)
        ema_list.append((prices[-1] - ema_list[-1]) * multiplier + ema_list[-1])
    
    def _calculate_rsi(self, prices):
        if len(prices) <= self.config.rsi_period:
            self.rsi.append(50)
            return
        delta = np.diff(prices)
        if self.avg_gain is None or self.avg_loss is None:
            gains = [x if x > 0 else 0 for x in delta[-self.config.rsi_period:]]
            losses = [-x if x < 0 else 0 for x in delta[-self.config.rsi_period:]]
            self.avg_gain = np.mean(gains)
            self.avg_loss = np.mean(losses)
        else:
            current_gain = delta[-1] if delta[-1] > 0 else 0
            current_loss = -delta[-1] if delta[-1] < 0 else 0
            self.avg_gain = ((self.avg_gain * (self.config.rsi_period - 1)) + current_gain) / self.config.rsi_period
            self.avg_loss = ((self.avg_loss * (self.config.rsi_period - 1)) + current_loss) / self.config.rsi_period
        if self.avg_loss == 0:
            rsi_value = 100
        else:
            rs = self.avg_gain / self.avg_loss
            rsi_value = 100 - (100 / (1 + rs))
        self.rsi.append(rsi_value)
    
    def _calculate_macd(self, prices):
        if len(prices) < self.config.macd_slow:
            self.macd.append(0)
            self.macd_signal.append(0)
            self.macd_hist.append(0)
            return
        ema12 = self._calculate_vectorized_ema(prices, self.config.macd_fast)
        ema26 = self._calculate_vectorized_ema(prices, self.config.macd_slow)
        macd_line = ema12[-1] - ema26[-1]
        macd_values = [p[0] - p[1] for p in zip(ema12, ema26)]
        if len(macd_values) >= self.config.macd_signal:
            signal_line = np.mean(macd_values[-self.config.macd_signal:])
        else:
            signal_line = macd_line
        histogram = macd_line - signal_line
        self.macd.append(macd_line)
        self.macd_signal.append(signal_line)
        self.macd_hist.append(histogram)

    def _calculate_vectorized_ema(self, prices, period):
        if len(prices) < period:
            return [prices[-1]] * len(prices)
        return pd.Series(prices).ewm(span=period, adjust=False).mean().values
    
    def _update_trend_analysis(self):
        # We keep this method for other internal uses.
        if len(self.close_prices) < self.config.trend_confirmation_period + 1:
            self.trend_direction = 0
            self.trend_strength = 0
            return
        short_term_change = (self.close_prices[-1] / self.close_prices[-self.config.trend_confirmation_period]) - 1
        if len(self.ema_short) >= 2 and len(self.sma_short) >= 2 and len(self.sma_long) >= 2:
            ema_short_slope = (self.ema_short[-1] / self.ema_short[-2]) - 1
            sma_short_slope = (self.sma_short[-1] / self.sma_short[-2]) - 1
            sma_long_slope = (self.sma_long[-1] / self.sma_long[-2]) - 1
            signals = [
                short_term_change > 0,
                self.sma_short[-1] > self.sma_long[-1],
                ema_short_slope > 0,
                sma_short_slope > 0,
                sma_long_slope > 0
            ]
            positive_count = sum(signals)
            negative_count = len(signals) - positive_count
            if positive_count > negative_count + 1:
                self.trend_direction = 1
                self.trend_strength = min(10, int((positive_count / len(signals)) * 10))
            elif negative_count > positive_count + 1:
                self.trend_direction = -1
                self.trend_strength = min(10, int((negative_count / len(signals)) * 10))
            else:
                self.trend_direction = 0
                self.trend_strength = min(5, abs(positive_count - negative_count))
        else:
            self.trend_direction = 1 if short_term_change > 0.01 else (-1 if short_term_change < -0.01 else 0)
            self.trend_strength = min(5, int(abs(short_term_change * 100)))
    
    def _update_support_resistance(self):
        if len(self.close_prices) < 20:
            return
        prices = np.array(self.close_prices)
        window = min(5, len(prices) // 10)
        if len(self.close_prices) % 20 == 0:
            self.support_levels = []
            self.resistance_levels = []
        for i in range(window, len(prices) - window):
            if all(prices[i] > prices[i-j] for j in range(1, window+1)) and all(prices[i] > prices[i+j] for j in range(1, window+1)):
                self.resistance_levels.append(prices[i])
            if all(prices[i] < prices[i-j] for j in range(1, window+1)) and all(prices[i] < prices[i+j] for j in range(1, window+1)):
                self.support_levels.append(prices[i])
        self.support_levels = self.support_levels[-5:] if self.support_levels else [min(prices)]
        self.resistance_levels = self.resistance_levels[-5:] if self.resistance_levels else [max(prices)]
    
    def get_state_features(self):
        if len(self.close_prices) < 2:
            return np.zeros(9)
        price_change = (self.close_prices[-1] / self.close_prices[-2]) - 1
        volume_ratio = self.volume[-1] / np.mean(self.volume[-10:]) if len(self.volume) >= 10 else 1.0
        rsi_value = self.rsi[-1] if self.rsi else 50
        macd_hist_value = self.macd_hist[-1] if self.macd_hist else 0
        sma_cross = 1 if (len(self.sma_short) > 0 and len(self.sma_long) > 0 and self.sma_short[-1] > self.sma_long[-1]) else -1
        volatility = self.volatility_history[-1] if self.volatility_history else 0
        # Use the SMA comparison for trend instead of complex internal trend analysis:
        if len(self.sma_short) and len(self.sma_long):
            trend_signal = 1 if self.sma_short[-1] > self.sma_long[-1] else -1
        else:
            trend_signal = 0
        trend_str = trend_signal
        price_level = 0.5
        if self.support_levels and self.resistance_levels:
            closest_support = min(self.support_levels, key=lambda x: abs(x - self.close_prices[-1]))
            closest_resistance = min(self.resistance_levels, key=lambda x: abs(x - self.close_prices[-1]))
            range_total = closest_resistance - closest_support
            if range_total > 0:
                price_level = (self.close_prices[-1] - closest_support) / range_total
                price_level = min(1.0, max(0.0, price_level))
        sr_proximity = 0
        if self.support_levels and self.resistance_levels:
            support_dist = (self.close_prices[-1] - closest_support) / self.close_prices[-1] if closest_support > 0 else 1
            resist_dist = (closest_resistance - self.close_prices[-1]) / self.close_prices[-1] if closest_resistance > 0 else 1
            if support_dist < resist_dist and support_dist < 0.02:
                sr_proximity = -1
            elif resist_dist < support_dist and resist_dist < 0.02:
                sr_proximity = 1
        return np.array([
            price_change,
            volume_ratio,
            rsi_value / 100,
            macd_hist_value,
            sma_cross,
            volatility,
            trend_str,      # trend signal here is simply +1 or -1 from SMA cross
            price_level,
            sr_proximity
        ])
    
    def get_trade_signals(self):
        """
        Revised trade signal generation:
          - Trend signal: based on SMA cross.
          - Mean reversion: based on RSI relative to 50.
          - MACD signal: based on current MACD vs MACD signal line.
        Each individual signal now always returns +1 or -1 when data is available.
        """
        signals = {}
        # Trend signal from SMA cross:
        if len(self.sma_short) > 0 and len(self.sma_long) > 0:
            if self.sma_short[-1] > self.sma_long[-1]:
                trend_signal = 1
            else:
                trend_signal = -1
            # Confidence: relative difference
            trend_conf = abs(self.sma_short[-1] - self.sma_long[-1]) / (abs(self.sma_long[-1]) + 1e-6)
        else:
            trend_signal, trend_conf = 0, 0

        # Mean reversion using RSI relative to 50:
        if self.rsi:
            rsi_value = self.rsi[-1]
            if rsi_value < 50:
                mean_rev_signal = 1
                mean_rev_conf = (50 - rsi_value) / 50.0
            elif rsi_value > 50:
                mean_rev_signal = -1
                mean_rev_conf = (rsi_value - 50) / 50.0
            else:
                mean_rev_signal, mean_rev_conf = 0, 0
        else:
            mean_rev_signal, mean_rev_conf = 0, 0

        # MACD signal:
        if len(self.macd) > 0 and len(self.macd_signal) > 0:
            if self.macd[-1] > self.macd_signal[-1]:
                macd_signal = 1
                macd_conf = abs(self.macd[-1] - self.macd_signal[-1]) / (abs(self.macd_signal[-1]) + 1e-6)
            else:
                macd_signal = -1
                macd_conf = abs(self.macd_signal[-1] - self.macd[-1]) / (abs(self.macd_signal[-1]) + 1e-6)
        else:
            macd_signal, macd_conf = 0, 0

        # Weighted consensus (weights can be adjusted further):
        weighted = trend_signal * trend_conf * 0.4 + mean_rev_signal * mean_rev_conf * 0.3 + macd_signal * macd_conf * 0.3

        if weighted > 0:
            final_action = 1  # Long
        elif weighted < 0:
            final_action = 2  # Short
        else:
            final_action = 0  # Hold

        final_confidence = min(1.0, abs(weighted))
        signals['action'] = final_action
        signals['confidence'] = final_confidence
        signals['trend'] = trend_signal
        signals['mean_reversion'] = mean_rev_signal
        signals['macd_cross'] = macd_signal
        return signals

class TransitionModel:
    def __init__(self, state_dim, action_dim, random_seed=42):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.random_seed = random_seed
        self.models = []
        for i in range(state_dim):
            model = Pipeline([
                ('scaler', RobustScaler()),
                ('regressor', GradientBoostingRegressor(n_estimators=40, max_depth=3, learning_rate=0.05,
                                                        subsample=0.8, min_samples_leaf=10, random_state=random_seed))
            ])
            self.models.append(model)
        self.trained = False
        self.validation_error = float('inf')
        self.train_attempts = 0
        self.consecutive_failures = 0
        self.best_models = None
        self.best_error = float('inf')
        
    def train(self, states, actions, next_states):
        if len(states) < 200:
            return False
        self.train_attempts += 1
        X = np.hstack((states, actions.reshape(-1, 1)))
        try:
            X_train, X_val, y_train, y_val = train_test_split(X, next_states, test_size=0.2, 
                                                               random_state=self.random_seed + self.train_attempts)
            total_error = 0
            for i in range(self.state_dim):
                self.models[i].fit(X_train, y_train[:, i])
                y_pred = self.models[i].predict(X_val)
                total_error += mean_squared_error(y_val[:, i], y_pred)
            new_validation_error = total_error / self.state_dim
            if new_validation_error < self.validation_error or not self.trained:
                self.validation_error = new_validation_error
                self.trained = True
                self.consecutive_failures = 0
                if new_validation_error < self.best_error:
                    import copy
                    self.best_models = copy.deepcopy(self.models)
                    self.best_error = new_validation_error
                return True
            else:
                self.consecutive_failures += 1
                if self.best_models is not None and new_validation_error > 1.5 * self.best_error:
                    self.models = self.best_models
                    self.validation_error = self.best_error
                return True
        except Exception as e:
            self.consecutive_failures += 1
            print(f"Model training error: {str(e)}")
            return False
            
    def predict(self, state, action):
        if not self.trained:
            return None
        try:
            X = np.hstack((state.reshape(1, -1), np.array([[action]])))
            predictions = np.zeros(self.state_dim)
            for i in range(self.state_dim):
                predictions[i] = self.models[i].predict(X)[0]
            return predictions
        except Exception as e:
            print(f"Prediction error: {str(e)}")
            return None
    
    def needs_reset(self, max_failures):
        return self.consecutive_failures >= max_failures

class RewardModel:
    def __init__(self, state_dim, action_dim, random_seed=42):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.random_seed = random_seed
        self.model = Pipeline([
            ('scaler', RobustScaler()),
            ('regressor', GradientBoostingRegressor(n_estimators=30, max_depth=3, learning_rate=0.05,
                                                    subsample=0.8, min_samples_leaf=10, random_state=random_seed))
        ])
        self.trained = False
        self.validation_error = float('inf')
        self.train_attempts = 0
        self.consecutive_failures = 0
        self.best_model = None
        self.best_error = float('inf')
        
    def train(self, states, actions, rewards):
        if len(states) < 200:
            return False
        self.train_attempts += 1
        X = np.hstack((states, actions.reshape(-1, 1)))
        y = rewards
        try:
            X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2,
                                                               random_state=self.random_seed + self.train_attempts)
            self.model.fit(X_train, y_train)
            y_pred = self.model.predict(X_val)
            new_validation_error = mean_squared_error(y_val, y_pred)
            if new_validation_error < self.validation_error or not self.trained:
                self.validation_error = new_validation_error
                self.trained = True
                self.consecutive_failures = 0
                if new_validation_error < self.best_error:
                    import copy
                    self.best_model = copy.deepcopy(self.model)
                    self.best_error = new_validation_error
                return True
            else:
                self.consecutive_failures += 1
                if self.best_model is not None and new_validation_error > 1.5 * self.best_error:
                    self.model = self.best_model
                    self.validation_error = self.best_error
                return True
        except Exception as e:
            self.consecutive_failures += 1
            print(f"Reward model training error: {str(e)}")
            return False
            
    def predict(self, state, action):
        if not self.trained:
            return 0.0
        try:
            X = np.hstack((state.reshape(1, -1), np.array([[action]])))
            return self.model.predict(X)[0]
        except Exception:
            return 0.0
    
    def needs_reset(self, max_failures):
        return self.consecutive_failures >= max_failures

class ReplayBuffer:
    def __init__(self, buffer_size=10000):
        self.buffer = deque(maxlen=buffer_size)
        
    def add(self, state, action, reward, next_state):
        self.buffer.append((state, action, reward, next_state))
        
    def sample(self, batch_size):
        batch_size = min(len(self.buffer), batch_size)
        batch = random.sample(self.buffer, batch_size)
        states = np.array([x[0] for x in batch])
        actions = np.array([x[1] for x in batch])
        rewards = np.array([x[2] for x in batch])
        next_states = np.array([x[3] for x in batch])
        return states, actions, rewards, next_states
        
    def __len__(self):
        return len(self.buffer)
    
    def clear(self):
        self.buffer.clear()

class MBPOTrainingAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.Debug("Initializing Daily Trading MBPO Training Algorithm...")
        self.config = Config(self)
        self.SetStartDate(self.config.start_date)
        self.SetEndDate(self.config.end_date)
        self.SetCash(self.config.initial_cash)
        self.Debug(f"Using random seed: {self.config.random_seed}")
        market = self.config.get_market()
        self.SetBrokerageModel(DefaultBrokerageModel(AccountType.Margin))
        self.btcSymbol = self.AddCrypto(self.config.benchmark_symbol, self.config.resolution_training, market).Symbol
        self.SetBenchmark(self.btcSymbol)
        self.symbol = self.AddCrypto(self.config.trading_symbol, self.config.resolution_training, market).Symbol
        self.trading_model = DailyTradingModel(self.config)
        self.sma20 = self.SMA(self.symbol, self.config.sma_short_period, self.config.resolution_training)
        self.sma50 = self.SMA(self.symbol, self.config.sma_long_period, self.config.resolution_training)
        self.rsi = self.RSI(self.symbol, self.config.rsi_period, MovingAverageType.Simple, self.config.resolution_training)
        self.macd = self.MACD(self.symbol, self.config.macd_fast, self.config.macd_slow, self.config.macd_signal,
                              MovingAverageType.Exponential, self.config.resolution_training)
        self.SetWarmUp(TimeSpan.FromDays(self.config.warmup_period))
        
        self.actions = [0, 1, 2]  # Hold, Long, Short
        self.state_dim = 9  # Daily trading state features
        self.action_dim = 1
        
        self.training_data_loaded = False
        self.training_index = None
        self.training_data_length = None
        self.last_training_action_time = None
        self.training_action_interval = timedelta(days=1)
        
        self.epsilon = self.config.epsilon
        self.epsilon_min = self.config.epsilon_min
        self.epsilon_decay = self.config.epsilon_decay
        
        self.best_avg_reward = -float('inf')
        self.no_improvement_count = 0
        self.model_reset_count = 0
        self.consecutive_negative_rewards = 0
        self.log_count = 0
        self.episode_rewards = []
        self.daily_returns = []
        self.sharpe_ratios = []
        self.performance_stats = {}
        self.strategy_accuracy = {'trend': [], 'mean_reversion': [], 'macd_cross': []}
        
        self.transition_model = TransitionModel(self.state_dim, self.action_dim, self.config.random_seed)
        self.reward_model = RewardModel(self.state_dim, self.action_dim, self.config.random_seed)
        self.replay_buffer = ReplayBuffer(self.config.replay_buffer_size)
        
        random.seed(self.config.random_seed)
        np.random.seed(self.config.random_seed)
        
        self.days_since_model_update = 0
        self.q_table = defaultdict(lambda: np.zeros(len(self.actions)))
        self.current_episode = 0
        self.training_complete = False
        self.current_episode_reward = 0
        self.last_action = 0
        self.model_prediction_errors = []
        
        self.Debug(f"Model prefix: {self.config.get_model_prefix()}")

    def LogWithRateLimit(self, message, force=False):
        self.log_count += 1
        if force or self.log_count % 5 == 0:
            self.Debug(message)

    def LoadTrainingData(self):
        try:
            history = self.History(self.symbol, 300, Resolution.Daily)
            if history.empty or len(history) < self.config.min_training_days:
                self.LogWithRateLimit("Not enough daily historical data to train.", True)
                self.training_complete = True
                self.training_data_length = 0
                self.training_index = 0
                return
            self.LogWithRateLimit(f"Loaded {len(history)} daily bars for training.", True)
            history = history.loc[self.symbol]
            self.tr_closes = history['close'].values
            self.tr_highs = history['high'].values
            self.tr_lows = history['low'].values
            self.tr_volumes = history['volume'].values
            for i in range(1, len(self.tr_closes)):
                self.daily_returns.append((self.tr_closes[i] - self.tr_closes[i-1]) / self.tr_closes[i-1])
            for i in range(len(self.tr_closes)):
                self.trading_model.update(self.tr_closes[i], self.tr_highs[i], self.tr_lows[i], self.tr_volumes[i])
            self.tr_raw_states = []
            for i in range(len(self.tr_closes)):
                if i < 20:
                    self.tr_raw_states.append(np.zeros(self.state_dim))
                else:
                    state_features = self.trading_model.get_state_features()
                    self.tr_raw_states.append(state_features)
            self.tr_raw_states = np.array(self.tr_raw_states)
            self.tr_signals = []
            for i in range(len(self.tr_closes)):
                if i < 20:
                    default_signal = {'action': 0, 'confidence': 0, 'trend': 0, 'mean_reversion': 0, 'macd_cross': 0}
                    self.tr_signals.append(default_signal)
                else:
                    signal = self.trading_model.get_trade_signals()
                    signal['trend'] = signal.get('trend', 0)
                    signal['mean_reversion'] = signal.get('mean_reversion', 0)
                    signal['macd_cross'] = signal.get('macd_cross', 0)
                    self.tr_signals.append(signal)
            self.training_data_length = len(self.tr_closes)
            self.training_index = min(60, self.training_data_length - 2)
            self.LogWithRateLimit(f"Training data length: {self.training_data_length}", True)
            self.LogWithRateLimit(f"Starting Episode {self.current_episode+1}.", True)
        except Exception as e:
            self.LogWithRateLimit(f"Error loading training data: {str(e)}", True)
            self.training_complete = True
            self.training_data_length = 0
            self.training_index = 0

    def DiscretizeState(self, state_vector):
        discretized = []
        price_change = np.clip(state_vector[0], -0.05, 0.05)
        price_change_bin = int((price_change + 0.05) / 0.1 * 5)
        price_change_bin = min(4, max(0, price_change_bin))
        discretized.append(price_change_bin)
        volume_ratio = state_vector[1]
        volume_bin = 0 if volume_ratio < 0.7 else (2 if volume_ratio > 1.3 else 1)
        discretized.append(volume_bin)
        rsi = state_vector[2] * 100
        if rsi < 30:
            rsi_bin = 0
        elif rsi < 45:
            rsi_bin = 1
        elif rsi < 55:
            rsi_bin = 2
        elif rsi < 70:
            rsi_bin = 3
        else:
            rsi_bin = 4
        discretized.append(rsi_bin)
        macd = state_vector[3]
        macd_bin = 0 if macd < -0.01 else (2 if macd > 0.01 else 1)
        discretized.append(macd_bin)
        sma_bin = 0 if state_vector[4] == -1 else 1
        discretized.append(sma_bin)
        volatility = state_vector[5]
        vol_bin = 0 if volatility < 0.01 else (2 if volatility > 0.03 else 1)
        discretized.append(vol_bin)
        trend = state_vector[6]
        trend_bin = int((trend + 1) / 2 * 3)
        trend_bin = min(2, max(0, trend_bin))
        discretized.append(trend_bin)
        sr_proximity = state_vector[8]
        price_level = state_vector[7]
        if sr_proximity == -1:
            level_bin = 0
        elif sr_proximity == 1:
            level_bin = 2
        else:
            level_bin = 1
        discretized.append(level_bin)
        return tuple(discretized)

    def ResetModels(self):
        self.LogWithRateLimit(f"Resetting models (reset #{self.model_reset_count+1})", True)
        self.transition_model = TransitionModel(self.state_dim, self.action_dim, self.config.random_seed)
        self.reward_model = RewardModel(self.state_dim, self.action_dim, self.config.random_seed)
        self.replay_buffer.clear()
        self.model_update_failures = 0
        self.model_prediction_errors = []
        self.model_reset_count += 1
        self.consecutive_negative_rewards = 0
        self.epsilon = min(0.8, max(0.5, self.epsilon * 1.2))

    def TrainStep(self):
        if self.training_data_length is None or self.training_index is None:
            self.LogWithRateLimit("Training data not loaded. Skipping TrainStep.")
            return
        if self.training_data_length <= 60:
            self.LogWithRateLimit("Insufficient training data length. Stopping training.", True)
            self.training_complete = True
            return
        if self.consecutive_negative_rewards >= self.config.max_consecutive_negative_rewards:
            if self.model_reset_count < 2:
                self.ResetModels()
            else:
                self.LogWithRateLimit("Early stopping due to consecutive negative rewards.", True)
                self.training_complete = True
                self.EvaluateTrainingResults()
                self.SaveQTable()
            return
        if self.training_index >= self.training_data_length - 1:
            self.episode_rewards.append(self.current_episode_reward)
            episode_returns = []
            if len(self.episode_rewards) > 1:
                returns = []
                for i in range(1, len(self.episode_rewards)):
                    prev_reward = self.episode_rewards[i-1]
                    if abs(prev_reward) > 1e-6:
                        returns.append((self.episode_rewards[i] - prev_reward) / abs(prev_reward))
                    else:
                        returns.append(0)
                episode_returns = np.nan_to_num(returns, nan=0)
                if len(episode_returns) > 0:
                    sharpe = self.CalculateSharpe(episode_returns)
                    self.sharpe_ratios.append(sharpe)
            self.current_episode += 1
            self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
            should_log = (self.current_episode % self.config.log_frequency == 0 or 
                          self.current_episode == 1 or 
                          self.current_episode == self.config.episodes)
            if should_log:
                self.LogWithRateLimit(f"Episode {self.current_episode} done. Reward: {self.current_episode_reward:.2f}, Epsilon: {self.epsilon:.3f}", True)
            if len(self.model_prediction_errors) > 0 and should_log:
                median_error = np.median(self.model_prediction_errors)
                self.LogWithRateLimit(f"Model prediction median error: {median_error:.4f}")
            if self.current_episode > 1:
                recent_window = min(3, len(self.episode_rewards))
                current_avg_reward = np.mean(self.episode_rewards[-recent_window:])
                if current_avg_reward <= 0:
                    self.consecutive_negative_rewards += 1
                else:
                    self.consecutive_negative_rewards = 0
                if current_avg_reward > self.best_avg_reward + self.config.min_improvement:
                    self.best_avg_reward = current_avg_reward
                    self.no_improvement_count = 0
                    self.SaveQTable("best_qtable.pkl")
                else:
                    self.no_improvement_count += 1
                if self.no_improvement_count >= self.config.patience:
                    if self.model_reset_count < 2:
                        self.ResetModels()
                        self.no_improvement_count = 0
                    else:
                        self.LogWithRateLimit(f"No improvement for {self.config.patience} episodes. Stopping early.", True)
                        self.training_complete = True
                        self.EvaluateTrainingResults()
                        self.SaveQTable()
                        return
            if self.current_episode >= self.config.episodes:
                self.training_complete = True
                self.EvaluateTrainingResults()
                self.SaveQTable()
                return
            self.training_index = min(60, self.training_data_length - 2)
            self.current_episode_reward = 0
            self.last_action = 0
            return
        i = self.training_index
        try:
            current_state_raw = self.tr_raw_states[i].copy()
            current_state_tuple = self.DiscretizeState(current_state_raw)
            investor_signal = self.tr_signals[i]
            self.days_since_model_update += 1
            if (self.days_since_model_update >= self.config.model_train_freq and 
                len(self.replay_buffer) >= self.config.min_real_samples):
                success = self.UpdateDynamicsModel()
                if not success:
                    self.model_update_failures += 1
                    if self.model_update_failures >= self.config.max_failed_model_updates:
                        if self.model_reset_count < 2:
                            self.ResetModels()
                        else:
                            self.training_complete = True
                            self.EvaluateTrainingResults()
                            self.SaveQTable()
                        return
                else:
                    self.model_update_failures = 0
                self.days_since_model_update = 0
            if random.random() < 0.3 and investor_signal['confidence'] > 0.4:
                action = investor_signal['action']
            elif random.random() < self.epsilon:
                action = random.choice(self.actions)
            else:
                action = int(np.argmax(self.q_table[current_state_tuple]))
            if i + 1 >= len(self.tr_raw_states):
                self.LogWithRateLimit(f"Index {i+1} out of range in training data.")
                self.training_complete = True
                return
            real_next_state_raw = self.tr_raw_states[i+1].copy()
            real_next_state_tuple = self.DiscretizeState(real_next_state_raw)
            price_return = (self.tr_closes[i+1] - self.tr_closes[i]) / self.tr_closes[i]
            reward = self.CalculateDailyReward(action, self.tr_closes[i], self.tr_closes[i+1], self.tr_signals[i])
            self.current_episode_reward += reward
            scaled_reward = reward * self.config.reward_scaling
            self.replay_buffer.add(current_state_raw, action, scaled_reward, real_next_state_raw)
            if self.transition_model.trained and self.reward_model.trained:
                try:
                    predicted_next_state = self.transition_model.predict(current_state_raw, action)
                    if predicted_next_state is not None:
                        prediction_error = np.mean(((real_next_state_raw - predicted_next_state) / (np.maximum(np.abs(real_next_state_raw), 1e-6)))**2)
                        self.model_prediction_errors.append(min(prediction_error, 100.0))
                except Exception:
                    pass
            for strategy_name in ['trend', 'mean_reversion', 'macd_cross']:
                signal_value = investor_signal.get(strategy_name, 0)
                if signal_value != 0:
                    is_correct = (signal_value > 0 and price_return > 0) or (signal_value < 0 and price_return < 0)
                    self.strategy_accuracy[strategy_name].append(1 if is_correct else 0)
            if random.random() < 0.5:
                best_next_action = int(np.argmax(self.q_table[real_next_state_tuple]))
                td_target = scaled_reward + self.config.discount_factor * self.q_table[real_next_state_tuple][best_next_action]
                td_error = td_target - self.q_table[current_state_tuple][action]
                self.q_table[current_state_tuple][action] += self.config.learning_rate * td_error
            if (self.transition_model.trained and self.reward_model.trained and 
                len(self.replay_buffer) >= self.config.min_real_samples):
                self.GenerateSyntheticExperience(current_state_raw, action)
            self.last_action = action
            self.training_index += 1
        except Exception as e:
            self.LogWithRateLimit(f"Error in TrainStep: {str(e)}")
            self.training_index = self.training_data_length

    def CalculateSharpe(self, returns, risk_free_rate=0.0):
        if len(returns) < 2:
            return 0.0
        returns_array = np.array(returns)
        returns_array = returns_array[~np.isnan(returns_array)]
        if len(returns_array) < 2:
            return 0.0
        excess_returns = returns_array - risk_free_rate
        std_dev = np.std(excess_returns)
        if std_dev == 0:
            return 0.0
        return np.mean(excess_returns) / std_dev * np.sqrt(252)

    def CalculateDailyReward(self, action, current_price, next_price, signal_info):
        if current_price <= 0 or not np.isfinite(current_price) or not np.isfinite(next_price):
            return 0
        price_return = (next_price - current_price) / current_price
        commission_penalty = self.config.commission_rate * 0.5
        if action == 1:
            reward = price_return - commission_penalty
        elif action == 2:
            reward = -price_return - commission_penalty
        else:
            reward = 0.0
            if abs(price_return) < 0.01:
                reward = 0.001
        if action == signal_info['action']:
            reward += 0.01
        else:
            reward -= 0.005
        if self.last_action == action and action != 0 and abs(price_return) < 0.02:
            reward += 0.005
        if action != 0 and abs(price_return) > 0.05:
            reward -= 0.005
        return reward

    def UpdateDynamicsModel(self):
        if len(self.replay_buffer) < self.config.min_real_samples:
            return False
        sample_size = min(len(self.replay_buffer), 2000)
        states, actions, rewards, next_states = self.replay_buffer.sample(sample_size)
        transition_success = self.transition_model.train(states, actions, next_states)
        reward_success = self.reward_model.train(states, actions, rewards)
        return transition_success and reward_success

    def GenerateSyntheticExperience(self, init_state, init_action):
        if not (self.transition_model.trained and self.reward_model.trained):
            return
        num_synthetic = min(self.config.synthetic_data_ratio, 3)
        for _ in range(num_synthetic):
            state = init_state.copy()
            action = init_action
            for _ in range(min(self.config.model_rollout_length, 3)):
                next_state = self.transition_model.predict(state, action)
                if next_state is None:
                    break
                try:
                    states_sample, _, _, _ = self.replay_buffer.sample(min(500, len(self.replay_buffer)))
                    distances = np.sqrt(np.sum((states_sample - next_state.reshape(1, -1)) ** 2, axis=1))
                    if np.min(distances) > 5.0:
                        break
                    reward = self.reward_model.predict(state, action) * 0.8
                    state_tuple = self.DiscretizeState(state)
                    next_state_tuple = self.DiscretizeState(next_state)
                    next_q_values = self.q_table[next_state_tuple]
                    expected_q = sum([self.GetActionProbability(next_state_tuple, a) * next_q_values[a] 
                                      for a in range(len(self.actions))])
                    td_target = reward + self.config.discount_factor * expected_q
                    td_error = td_target - self.q_table[state_tuple][action]
                    self.q_table[state_tuple][action] += self.config.learning_rate * 0.3 * td_error
                    state = next_state
                    best_next_action = int(np.argmax(self.q_table[next_state_tuple]))
                    if random.random() < max(self.epsilon, 0.4):
                        action = random.choice(self.actions)
                    else:
                        action = best_next_action
                except Exception:
                    break

    def GetActionProbability(self, state_tuple, action):
        q_values = self.q_table[state_tuple]
        max_q = np.max(q_values)
        probs = np.ones(len(self.actions)) * self.epsilon / len(self.actions)
        best_actions = np.where(q_values == max_q)[0]
        probs[best_actions] += (1 - self.epsilon) / len(best_actions)
        return probs[action]

    def EvaluateTrainingResults(self):
        avg_reward = np.mean(self.episode_rewards) if self.episode_rewards else 0
        max_reward = max(self.episode_rewards) if self.episode_rewards else 0
        min_reward = min(self.episode_rewards) if self.episode_rewards else 0
        avg_sharpe = np.mean(self.sharpe_ratios) if self.sharpe_ratios else 0
        model_error = np.median(self.model_prediction_errors) if self.model_prediction_errors else float('inf')
        reward_std = np.std(self.episode_rewards) if len(self.episode_rewards) > 1 else float('inf')
        reward_consistency = 0 if reward_std == float('inf') or reward_std == 0 else avg_reward / reward_std
        positive_episodes = sum(1 for r in self.episode_rewards if r > 0)
        total_episodes = len(self.episode_rewards) if self.episode_rewards else 0
        success_rate = positive_episodes / total_episodes if total_episodes > 0 else 0
        strategy_accuracy = {}
        for strategy, results in self.strategy_accuracy.items():
            strategy_accuracy[strategy] = sum(results) / len(results) if results else 0
        strategy_values = [acc for acc in strategy_accuracy.values() if acc > 0]
        avg_strategy_accuracy = np.mean(strategy_values) if strategy_values else 0
        self.performance_stats = {
            'avg_reward': avg_reward,
            'max_reward': max_reward,
            'min_reward': min_reward,
            'reward_std': reward_std,
            'reward_consistency': reward_consistency,
            'success_rate': success_rate,
            'avg_sharpe': avg_sharpe,
            'model_error': model_error,
            'episodes_completed': self.current_episode,
            'total_episodes': self.config.episodes,
            'strategy_accuracy': strategy_accuracy,
            'avg_strategy_accuracy': avg_strategy_accuracy
        }
        self.Debug("=" * 40)
        self.Debug("TRAINING PERFORMANCE SUMMARY")
        self.Debug("=" * 40)
        self.Debug(f"Episodes: {self.current_episode}/{self.config.episodes}")
        self.Debug(f"Avg Reward: {avg_reward:.4f} [{min_reward:.4f}, {max_reward:.4f}]")
        self.Debug(f"Reward Consistency: {reward_consistency:.4f}")
        self.Debug(f"Success Rate: {success_rate:.1%}")
        self.Debug(f"Sharpe Ratio: {avg_sharpe:.4f}")
        self.Debug(f"Model Error: {model_error:.4f}")
        self.Debug("-" * 30)
        self.Debug("STRATEGY ACCURACY")
        for strategy, accuracy in strategy_accuracy.items():
            self.Debug(f"{strategy.replace('_', ' ').title()}: {accuracy:.1%}")
        self.Debug("=" * 40)
        good_avg_reward = avg_reward >= self.config.min_avg_reward
        good_success_rate = success_rate >= self.config.success_rate_threshold
        good_sharpe = avg_sharpe >= self.config.sharpe_ratio_threshold
        good_strategy = avg_strategy_accuracy >= self.config.strategy_accuracy_threshold
        reasons = []
        if good_avg_reward:
            reasons.append("Average reward meets minimum threshold")
        else:
            reasons.append("Average reward below minimum threshold")
        if good_success_rate:
            reasons.append("Success rate meets the threshold")
        else:
            reasons.append("Success rate below threshold")
        if good_sharpe:
            reasons.append("Sharpe ratio meets threshold")
        else:
            reasons.append("Sharpe ratio below threshold")
        if good_strategy:
            reasons.append("Strategy accuracy meets threshold")
        else:
            reasons.append("Strategy accuracy needs improvement")
        is_ready = good_avg_reward and good_success_rate and good_sharpe and good_strategy
        self.performance_stats['is_ready_for_backtest'] = is_ready
        self.performance_stats['recommendation_reasons'] = reasons
        self.Debug("BACKTEST RECOMMENDATION")
        self.Debug("=" * 40)
        if is_ready:
            self.Debug("RECOMMENDATION: PROCEED WITH BACKTEST")
        else:
            self.Debug("RECOMMENDATION: FURTHER TRAINING NEEDED")
        self.Debug("Rationale:")
        for reason in reasons:
            self.Debug(f"- {reason}")
        self.Debug("=" * 40)
        try:
            self.LoadBestQTable()
        except:
            pass
        self.SaveModelStats()

    def SaveQTable(self, filename=None):
        if filename is None:
            filename = "qtable.pkl"
        prefixed_filename = f"{self.config.get_model_prefix()}_{filename}"
        try:
            qtable_to_save = dict(self.q_table)
            qtable_data = pickle.dumps(qtable_to_save)
            qtable_data_b64 = base64.b64encode(qtable_data).decode('utf-8')
            if self.ObjectStore is not None:
                self.ObjectStore.Save(prefixed_filename, qtable_data_b64)
                self.LogWithRateLimit(f"QTable saved as '{prefixed_filename}'", True)
        except Exception as e:
            self.LogWithRateLimit(f"Error saving QTable: {str(e)}", True)

    def SaveModelStats(self):
        try:
            stats = {
                'avg_reward': np.mean(self.episode_rewards) if self.episode_rewards else 0,
                'max_reward': max(self.episode_rewards) if self.episode_rewards else 0,
                'min_reward': min(self.episode_rewards) if self.episode_rewards else 0,
                'episodes': self.current_episode,
                'sharpe_ratio': np.mean(self.sharpe_ratios) if self.sharpe_ratios else 0,
                'training_complete': self.training_complete,
                'timestamp': str(self.Time),
                'random_seed': self.config.random_seed,
                'model_version': self.config.model_version,
                'performance_summary': self.performance_stats
            }
            stats_data = pickle.dumps(stats)
            stats_data_b64 = base64.b64encode(stats_data).decode('utf-8')
            filename = f"{self.config.get_model_prefix()}_model_stats.pkl"
            if self.ObjectStore is not None:
                self.ObjectStore.Save(filename, stats_data_b64)
                self.LogWithRateLimit(f"Model stats saved as '{filename}'", True)
        except Exception as e:
            self.LogWithRateLimit(f"Error saving model stats: {str(e)}", True)

    def LoadBestQTable(self):
        try:
            best_qtable_filename = f"{self.config.get_model_prefix()}_best_qtable.pkl"
            qtable_data_b64 = self.ObjectStore.Read(best_qtable_filename)
            if qtable_data_b64 is not None:
                qtable_data = base64.b64decode(qtable_data_b64)
                loaded_dict = pickle.loads(qtable_data)
                self.q_table = defaultdict(lambda: np.zeros(len(self.actions)), loaded_dict)
                self.LogWithRateLimit(f"Loaded best QTable: {best_qtable_filename}", True)
                return True
        except Exception as e:
            self.LogWithRateLimit(f"Could not load best QTable: {str(e)}")
        return False

    def OnData(self, data):
        if self.IsWarmingUp:
            return
        current_time = self.Time
        if not self.training_data_loaded:
            self.LoadTrainingData()
            self.training_data_loaded = True
            self.last_training_action_time = current_time
        if (self.last_training_action_time is None or 
            current_time - self.last_training_action_time >= self.training_action_interval):
            if self.training_data_length and self.training_data_length > 1:
                self.TrainStep()
            self.last_training_action_time = current_time

    def OnEndOfAlgorithm(self):
        if not self.training_complete:
            self.LogWithRateLimit("Algorithm ending, finalizing training...", True)
            self.EvaluateTrainingResults()
            self.SaveQTable()