| Overall Statistics |
|
Total Trades 116 Average Win 0.38% Average Loss -0.60% Compounding Annual Return 5.454% Drawdown 15.600% Expectancy -0.294 Net Profit 5.454% Sharpe Ratio 0.374 Probabilistic Sharpe Ratio 24.283% Loss Rate 57% Win Rate 43% Profit-Loss Ratio 0.64 Alpha 0.056 Beta 0.008 Annual Standard Deviation 0.153 Annual Variance 0.023 Information Ratio -0.364 Tracking Error 0.223 Treynor Ratio 7.528 Total Fees $175.81 |
from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
class NadionUncoupledPrism(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetEndDate(2011, 1, 1)
self.SetCash(100000)
#self.AddEquity("SPY", Resolution.Daily)
#self.AddEquity("QQQ", Resolution.Daily)
self.SetBenchmark("SPY")
self.UniverseSettings.Resolution = Resolution.Daily
self.symbols = [Symbol.Create("SPY", SecurityType.Equity, Market.USA) for ticker in ['SPY', 'TLT', 'QQQ']]
self.averages = {}
self.AddUniverseSelection(TechnologyUniverseModule())
self.AddRiskManagement(NullRiskManagementModel())
self.SetPortfolioConstruction(NullPortfolioConstructionModel())
self.SetExecution(ImmediateExecutionModel())
self.SetWarmUp(200)
def OnData(self, data):
if self.IsWarmingUp:
return
#self.MarketOrder('SPY', 1)
for security in self.changes.RemovedSecurities:
if security.Invested:
self.Liquidate(security.Symbol)
for security in self.changes.AddedSecurities:
if not security.Invested and security.Symbol not in self.symbols:
self.SetHoldings(security.Symbol, .05)
def OnSecuritiesChanged(self, changes):
self.changes = changes
class TechnologyUniverseModule(FundamentalUniverseSelectionModel):
#This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
#Initializes a new default instance of the TechnologyUniverseModule
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 100
self.numberOfSymbolsFine = 100
self.lastMonth = -1
self.averages = {}
def SelectCoarse(self, algorithm, coarse):
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
filtered = [x for x in coarse if x.HasFundamentalData and x.Price > 10]
if len(filtered) == 0:
return Universe.Unchanged
sorted_by_dollar_volume = sorted(filtered, key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.last_coarse = {cf.Symbol: cf for cf in sorted_by_dollar_volume}
return list(self.last_coarse.keys())
def SelectFine(self, algorithm, fine):
filtered = [x for x in fine if x.CompanyReference.CountryId == "USA" \
and x.CompanyReference.PrimaryExchangeID == "NAS" \
and x.CompanyReference.IndustryTemplateCode == "N" \
and (algorithm.Time - x.SecurityReference.IPODate).days > 180]
sorted_by_dollar_volume = sorted(filtered, key = lambda x: self.last_coarse[x.Symbol].DollarVolume, reverse=True)
# Get warmup history
new_symbols = []
for security in sorted_by_dollar_volume:
symbol = security.Symbol
if symbol not in self.averages:
new_symbols.append(symbol)
history = algorithm.History(new_symbols, 200, Resolution.Daily)
selected = []
for security in sorted_by_dollar_volume:
symbol = security.Symbol
if symbol in new_symbols:
self.averages[symbol] = SelectionData(history.loc[symbol])
self.averages[symbol].update(algorithm.Time, self.last_coarse[symbol].AdjustedPrice) #security.AdjustedPrice)
if self.averages[symbol].is_ready() and self.averages[symbol].fast > self.averages[symbol].slow:
selected.append(symbol)
if len(selected) == 0:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
return selected[:20]
class SelectionData():
# Update the constructor to accept a history array
def __init__(self, history):
self.slow = ExponentialMovingAverage(200)
self.fast = ExponentialMovingAverage(5)
# Loop over the history data and update the indicators
for time, row in history.iterrows():
self.fast.Update(time, row.close)
self.slow.Update(time, row.close)
def is_ready(self):
return self.slow.IsReady and self.fast.IsReady
def update(self, time, price):
self.fast.Update(time, price)
self.slow.Update(time, price)
class NullPortfolioConstructionModel(PortfolioConstructionModel):
def CreateTargets(self, algorithm, insights):
return []
class ImmediateExecutionModel(ExecutionModel):
def __init__(self):
self.targetsCollection = PortfolioTargetCollection()
def Execute(self, algorithm, targets):
# for performance we check count value, OrderByMarginImpact and ClearFulfilled are expensive to call
self.targetsCollection.AddRange(targets)
if self.targetsCollection.Count > 0:
for target in self.targetsCollection.OrderByMarginImpact(algorithm):
# calculate remaining quantity to be ordered
quantity = OrderSizing.GetUnorderedQuantity(algorithm, target)
if quantity != 0:
algorithm.MarketOrder(target.Symbol, quantity)
self.targetsCollection.ClearFulfilled(algorithm)from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel
class TechnologyUniverseModule(FundamentalUniverseSelectionModel):
'''
This module selects the most liquid stocks listed on the Nasdaq Stock Exchange.
'''
def __init__(self, filterFineData = True, universeSettings = None, securityInitializer = None):
'''Initializes a new default instance of the TechnologyUniverseModule'''
super().__init__(filterFineData, universeSettings, securityInitializer)
self.numberOfSymbolsCoarse = 1000
self.numberOfSymbolsFine = 100
self.dollarVolumeBySymbol = {}
self.lastMonth = -1
def SelectCoarse(self, algorithm, coarse):
'''
Performs a coarse selection:
-The stock must have fundamental data
-The stock must have positive previous-day close price
-The stock must have positive volume on the previous trading day
'''
if algorithm.Time.month == self.lastMonth:
return Universe.Unchanged
sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0],
key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse]
self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume}
# If no security has met the QC500 criteria, the universe is unchanged.
if len(self.dollarVolumeBySymbol) == 0:
return Universe.Unchanged
return list(self.dollarVolumeBySymbol.keys())
def SelectFine(self, algorithm, fine):
'''
Performs a fine selection:
-The company's headquarter must in the U.S.
-The stock must be traded on the NASDAQ stock exchange
-The stock must be in the Industry Template Code catagory N
-At least half a year since its initial public offering
'''
# Filter stocks and sort on dollar volume
sortedByDollarVolume = sorted([x for x in fine if x.CompanyReference.CountryId == "USA"
and x.CompanyReference.PrimaryExchangeID == "NAS"
and x.CompanyReference.IndustryTemplateCode == "N"
and (algorithm.Time - x.SecurityReference.IPODate).days > 180],
key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True)
if len(sortedByDollarVolume) == 0:
return Universe.Unchanged
self.lastMonth = algorithm.Time.month
return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]