| Overall Statistics |
|
Total Trades 34 Average Win 5.89% Average Loss -2.40% Compounding Annual Return 13.427% Drawdown 9.600% Expectancy 1.030 Net Profit 47.893% Sharpe Ratio 1.226 Probabilistic Sharpe Ratio 59.821% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 2.45 Alpha 0.094 Beta 0.268 Annual Standard Deviation 0.116 Annual Variance 0.013 Information Ratio -0.189 Tracking Error 0.193 Treynor Ratio 0.531 Total Fees $64.25 Estimated Strategy Capacity $71000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
false_bool = False
if false_bool:
from AlgorithmImports import *
from collections import deque
import configs as cfg
from datetime import timedelta
class EnergeticBlueDonkey(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2018, 1, 1)
self.SetEndDate(2021, 2, 5)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Minute).Symbol
self.gc = GoldenCross(cfg.fast_sma_period, cfg.slow_sma_period)
# makes it so we emulate Daily Resolution on Minute Resolution
# this is necessary since we are dealing with options, which only work on Minute or finer data
self.curr_day = -1
self.SetWarmUp(cfg.slow_sma_period + 3, Resolution.Daily)
def OnData(self, data:Slice):
if self.curr_day == self.Time.day or not data.Bars.ContainsKey(self.symbol):
return
self.curr_day = self.Time.day
self.gc.Update(data[self.symbol])
if self.IsWarmingUp or not self.gc.IsReady:
return
self.Plot('GoldenCross', 'Value', self.gc.Value)
# buy if golden cross + entry timing
# liquidate if death cross
if self.gc.Value == 2:
self.SetHoldings(self.symbol, 1)
elif self.gc.Value == 0:
self.SetHoldings(self.symbol, 0)
class GoldenCross:
def __init__(self, fast_period:int, slow_period:int):
'''
GoldenCross indicator
.Value = 0 -> not golden cross or death cross
.Value = 1 -> golden cross formed, entry not
.Value = 2 -> entry formed after golden cross
'''
self.Value = 0
self.fast_sma = SimpleMovingAverage(fast_period)
self.slow_sma = SimpleMovingAverage(slow_period)
# fast sma - slow sma
self.sma_diffs = deque(maxlen=3)
def dq_rdy(self, vals:deque):
'''
returns True iff the deque is has maxlen elements
'''
return len(vals) == vals.maxlen
def Update(self, input:TradeBar):
'''
updates the Golden Cross indicator with a new bar of data
returns self.IsReady
'''
self.Time = input.EndTime
close = input.Close
self.fast_sma.Update(self.Time, close)
self.slow_sma.Update(self.Time, close)
if not self.slow_sma.IsReady:
# since the slow_sma takes more values, if its ready
# the fast_sma must be ready
return False
self.sma_diffs.append(
self.fast_sma.Current.Value - self.slow_sma.Current.Value
)
if not self.dq_rdy(self.sma_diffs):
return False
is_crossed = (
self.sma_diffs[2] > 0 and self.sma_diffs[1] < 0 and self.sma_diffs[0] < 0
) # if the fast just recently rises above the slow
is_death_crossed = (
self.sma_diffs[2] < 0 and self.sma_diffs[1] > 0 and self.sma_diffs[0] > 0
) # if the fast just recently dips above the slow
if is_death_crossed:
self.Value = 0
if self.Value <= 0 and is_crossed:
self.Value = 1
elif self.Value == 1 and cfg.entry_condition(close, self.fast_sma.Current.Value, self.slow_sma.Current.Value) :
self.Value = 2
return True
def Warmup(self):
pass
@property
def IsReady(self):
'''
returns True iff the indicator is ready to use
'''
return self.dq_rdy(self.sma_diffs)#BEGIN GoldenCross configurations
fast_sma_period = 5
slow_sma_period = 20
assert(fast_sma_period < slow_sma_period)
# entry condition after cross has formed
def entry_condition(curr_price:float, fast_sma:float, slow_sma:float)->bool:
'''
return True iff entry condition is met
'''
sma_avg = (fast_sma + slow_sma) / 2
# 4% within average of two SMAs
return abs(1-(curr_price / sma_avg)) < .04
#END GoldenCross configurations