| Overall Statistics |
|
Total Trades 291 Average Win 0.22% Average Loss -0.23% Compounding Annual Return 14.798% Drawdown 33.200% Expectancy -0.111 Net Profit 14.841% Sharpe Ratio 0.508 Probabilistic Sharpe Ratio 26.532% Loss Rate 55% Win Rate 45% Profit-Loss Ratio 0.96 Alpha -0.023 Beta 1.025 Annual Standard Deviation 0.293 Annual Variance 0.086 Information Ratio -0.276 Tracking Error 0.069 Treynor Ratio 0.145 Total Fees $291.10 Estimated Strategy Capacity $44000000.00 Lowest Capacity Asset NTAP R735QTJ8XC9X |
from AlphaModel import *
class VerticalTachyonRegulators(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2021, 1, 1)
self.SetCash(100000)
# Universe selection
self.month = 0
self.num_coarse = 500
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
# Alpha Model
self.AddAlpha(FundamentalFactorAlphaModel())
# Portfolio construction model
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.IsRebalanceDue))
# Risk model
self.SetRiskManagement(NullRiskManagementModel())
# Execution model
self.SetExecution(ImmediateExecutionModel())
# Share the same rebalance function for Universe and PCM for clarity
def IsRebalanceDue(self, time):
# Rebalance on the first day of the Quarter
if time.month == self.month or time.month not in [1, 4, 7, 10]:
return None
self.month = time.month
return time
def CoarseSelectionFunction(self, coarse):
# If not time to rebalance, keep the same universe
if not self.IsRebalanceDue(self.Time):
return Universe.Unchanged
# Select only those with fundamental data and a sufficiently large price
# Sort by top dollar volume: most liquid to least liquid
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5],
key = lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in selected[:self.num_coarse]]
def FineSelectionFunction(self, fine):
# Filter the fine data for equities that IPO'd more than 5 years ago in selected sectors
sectors = [
MorningstarSectorCode.FinancialServices,
MorningstarSectorCode.RealEstate,
MorningstarSectorCode.Healthcare,
MorningstarSectorCode.Utilities,
MorningstarSectorCode.Technology]
filtered_fine = [x.Symbol for x in fine if x.SecurityReference.IPODate + timedelta(365*5) < self.Time
and x.AssetClassification.MorningstarSectorCode in sectors
and x.OperationRatios.ROE.Value > 0
and x.OperationRatios.NetMargin.Value > 0
and x.ValuationRatios.PERatio > 0]
return filtered_fineclass FundamentalFactorAlphaModel(AlphaModel):
def __init__(self):
self.rebalanceTime = datetime.min
# Dictionary containing set of securities in each sector
# e.g. {technology: set(AAPL, TSLA, ...), healthcare: set(XYZ, ABC, ...), ... }
self.sectors = {}
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
New insights'''
if algorithm.Time <= self.rebalanceTime:
return []
# Set the rebalance time to match the insight expiry
self.rebalanceTime = Expiry.EndOfQuarter(algorithm.Time)
insights = []
for sector in self.sectors:
securities = self.sectors[sector]
sortedByROE = sorted(securities, key=lambda x: x.Fundamentals.OperationRatios.ROE.Value, reverse=True)
sortedByPM = sorted(securities, key=lambda x: x.Fundamentals.OperationRatios.NetMargin.Value, reverse=True)
sortedByPE = sorted(securities, key=lambda x: x.Fundamentals.ValuationRatios.PERatio, reverse=False)
# Dictionary holding a dictionary of scores for each security in the sector
scores = {}
for security in securities:
score = sum([sortedByROE.index(security), sortedByPM.index(security), sortedByPE.index(security)])
scores[security] = score
# Add best 20% of each sector to longs set (minimum 1)
length = max(int(len(scores)/5), 1)
for security in sorted(scores.items(), key=lambda x: x[1], reverse=False)[:length]:
symbol = security[0].Symbol
# Use Expiry.EndOfQuarter in this case to match Universe, Alpha and PCM
insights.append(Insight.Price(symbol, Expiry.EndOfQuarter, InsightDirection.Up))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# Remove security from sector set
for security in changes.RemovedSecurities:
for sector in self.sectors:
if security in self.sectors[sector]:
self.sectors[sector].remove(security)
# Add security to corresponding sector set
for security in changes.AddedSecurities:
sector = security.Fundamentals.AssetClassification.MorningstarSectorCode
if sector not in self.sectors:
self.sectors[sector] = set()
self.sectors[sector].add(security)