| Overall Statistics |
|
Total Trades 4 Average Win 0.37% Average Loss -1.36% Compounding Annual Return -26.842% Drawdown 3.300% Expectancy -0.365 Net Profit -1.687% Sharpe Ratio -2.845 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.27 Alpha -0.209 Beta 0.09 Annual Standard Deviation 0.114 Annual Variance 0.013 Information Ratio 4.401 Tracking Error 0.215 Treynor Ratio -3.591 Total Fees $4.51 |
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using QuantConnect.Data.Market;
using QuantConnect.Indicators;
namespace QuantConnect.Algorithm.Examples
{
/// <summary>
/// Uses daily data and a simple moving average cross to place trades and an ema for stop placement
/// </summary>
public class DailyAlgorithm : QCAlgorithm
{
private DateTime lastAction;
private MovingAverageConvergenceDivergence macd;
private ExponentialMovingAverage ema_tsla;
String symbol_TSLA = "TSLA";
String symbol_SPY = "SPY";
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2016, 1, 1); //Set Start Date
SetEndDate(2016, 1, 20); //Set End Date
SetCash(100000); //Set Strategy Cash
// Find more symbols here: http://quantconnect.com/data
AddSecurity(SecurityType.Equity, symbol_TSLA, Resolution.Hour);
AddSecurity(SecurityType.Equity, symbol_SPY, Resolution.Hour);
macd = MACD(symbol_TSLA, 12, 26, 9, MovingAverageType.Exponential, Resolution.Hour, Field.Close);
ema_tsla = EMA(symbol_TSLA, 20, Resolution.Hour, Field.Close);
Securities[symbol_TSLA].SetLeverage(1.0m);
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">TradeBars IDictionary object with your stock data</param>
public void OnData(TradeBars data)
{
TradeBar TSLA = data[symbol_TSLA];
Log(TSLA.Time.ToString() + "--TSLA-- " + TSLA.Close);
TradeBar SPY = data[symbol_SPY];
Log(SPY.Time.ToString() + " --SPY-- " + SPY.Close);
if (!macd.IsReady) return;
Log("MACD" + " " + macd.ToString());
Log("ema_tsla" + " " + ema_tsla.ToString());
if (!data.ContainsKey(symbol_TSLA)) return;
if (lastAction.Date == Time.Date) return;
lastAction = Time;
var holding = Portfolio[symbol_SPY];
Log("MACD" + " " + macd.ToString());
Log("EMA" + " " + ema_tsla.ToString());
if (holding.Quantity <= 0 && macd > macd.Signal && data[symbol_TSLA].Price > ema_tsla)
{
SetHoldings(symbol_TSLA, 0.25m);
}
else if (holding.Quantity >= 0 && macd < macd.Signal && data[symbol_TSLA].Price < ema_tsla)
{
SetHoldings(symbol_TSLA, -0.25m);
}
}
}
}