| Overall Statistics |
|
Total Trades 274 Average Win 0.26% Average Loss -0.23% Compounding Annual Return -0.342% Drawdown 5.700% Expectancy -0.025 Net Profit -0.937% Sharpe Ratio -0.121 Loss Rate 54% Win Rate 46% Profit-Loss Ratio 1.14 Alpha -0.012 Beta 0.451 Annual Standard Deviation 0.026 Annual Variance 0.001 Information Ratio -0.9 Tracking Error 0.026 Treynor Ratio -0.007 Total Fees $340.92 |
from sklearn import linear_model
import numpy as np
import pandas as pd
from scipy import stats
from math import floor
from datetime import timedelta
class PairsTradingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2016,1,1)
self.SetEndDate(2018,10,1)
self.SetCash(100000)
self.numdays = 1000 # set the length of training period
tickers = ["XOM", "CVX"]
self.symbols = []
self.threshold = 1.
for i in tickers:
self.symbols.append(self.AddSecurity(SecurityType.Equity, i, Resolution.Hour).Symbol)
for i in self.symbols:
i.hist_window = RollingWindow[TradeBar](self.numdays)
def OnData(self, data):
if not (data.ContainsKey("CVX") and data.ContainsKey("XOM")): return
for symbol in self.symbols:
symbol.hist_window.Add(data[symbol])
price_x = pd.Series([float(i.Close) for i in self.symbols[0].hist_window],
index = [i.Time for i in self.symbols[0].hist_window])
price_y = pd.Series([float(i.Close) for i in self.symbols[1].hist_window],
index = [i.Time for i in self.symbols[1].hist_window])
if len(price_x) < 1000:
return
spread = self.regr(np.log(price_x), np.log(price_y))
mean = np.mean(spread)
std = np.std(spread)
ratio = floor(self.Portfolio[self.symbols[1]].Price / self.Portfolio[self.symbols[0]].Price)
quantity = float(self.CalculateOrderQuantity(self.symbols[0],0.2))
if spread[-1] > mean + self.threshold * std:
if not self.Portfolio[self.symbols[0]].Quantity > 0 and not self.Portfolio[self.symbols[0]].Quantity < 0:
self.Sell(self.symbols[1], quantity)
self.Buy(self.symbols[0], ratio * quantity)
elif spread[-1] < mean - self.threshold * std:
if not self.Portfolio[self.symbols[0]].Quantity < 0 and not self.Portfolio[self.symbols[0]].Quantity > 0:
self.Sell(self.symbols[0], quantity)
self.Buy(self.symbols[1], ratio * quantity)
else:
self.Liquidate()
def regr(self,x,y):
regr = linear_model.LinearRegression()
x_constant = np.column_stack([np.ones(len(x)), x])
regr.fit(x_constant, y)
beta = regr.coef_[0]
alpha = regr.intercept_
spread = y - x*beta - alpha
return spread