| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 45.034 Tracking Error 0.019 Treynor Ratio 0 Total Fees $0.00 |
from functools import partial
class CalibratedNadionReplicator(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2019, 12, 1) # Set Start Date
self.SetEndDate(2019, 12, 3)
self.SetCash(100000) # Set Strategy Cash
self.AddEquity("SPY", Resolution.Minute, Market.USA)
symbols = [ Symbol.Create("SPY", SecurityType.Equity, Market.USA) ]
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
self.UniverseSettings.Resolution = Resolution.Minute
self.AddAlpha(MyAlphaModel(self))
class MyAlphaModel(AlphaModel):
def __init__(self, algorithm):
algorithm.Schedule.On(algorithm.DateRules.EveryDay("SPY"), \
algorithm.TimeRules.BeforeMarketClose("SPY", 10), \
self.flag_close)
self.algo = algorithm
self.closing_soon = False
def flag_close(self):
self.closing_soon = True
def Update(self, algorithm, data):
insights = []
if self.closing_soon:
self.closing_soon = False
self.algo.Log("10 minutes before close!")
return insights
def OnSecuritiesChanged(self, algorithm, changes):
pass