| Overall Statistics |
|
Total Trades 88 Average Win 0.35% Average Loss -0.27% Compounding Annual Return 9.387% Drawdown 2.800% Expectancy 0.429 Net Profit 6.494% Sharpe Ratio 1.736 Loss Rate 38% Win Rate 62% Profit-Loss Ratio 1.29 Alpha 0.047 Beta 0.183 Annual Standard Deviation 0.05 Annual Variance 0.003 Information Ratio -0.999 Tracking Error 0.132 Treynor Ratio 0.478 Total Fees $88.00 |
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Indicators")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Python import PythonQuandl
from QuantConnect.Securities.Equity import EquityExchange
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from scipy.stats import norm
#from QuantConnect.Data.Custom.Tiingo import *
from QuantConnect.Python import PythonQuandl # quandl data not CLOSE
from QuantConnect.Python import PythonData # custom data
from QuantConnect.Data import SubscriptionDataSource
# Risk Premia RW algorithm
class RPRWAlgorithm(QCAlgorithm):
def Initialize(self):
# Initial settings
self.SetStartDate(2018, 12, 18)
self.SetEndDate(2019, 8, 30)
self.SetCash(10000)
self.MarketAsset = "SPY"
self.WarmupTime = 310
self.Window = 300
#parameters
self.vol_lookback = 90
self.corr_lookback = 120
self.formation_periods = np.array([3, 6, 9, 12])*22
self.z_score_cutoff = 0
self.momo_multiplier = 0.1
# these are the growth symbols we'll rotate through
self.GrowthSymbols = ["VTI", # Vanguard Total Stock Market ETF
"VEA", # VEA - Vanguard FTSE Developed Markets
"PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
"TLT", # iShares 20+ Year Treasury Bond ETF
"UST", # ProShares Ultra 7-10 Year Treasury
"VWO", # iShares MSCI Emerging Markets Indx
"VNQI", # VANGUARD INTL E/GLB EX-US RL EST IX
"GBTC", #BTC
"EMB"] # iShares J.P. Morgan USD Emerging Markets Bond ETF"
# these are the safety symbols we go to when things are looking bad for growth
# this part is not supposed to work
# I don't know how to open these assets
#self.SafetySymbols = "PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
# "EMB"] # iShares J.P. Morgan USD Emerging Markets Bond ETF"
#Tiingo.SetAuthCode("49e4ce130ce49c90d9e45193f70723b16c5e4ff7")
#self.AddData(TiingoDailyData, "PUTW", Resolution.Daily)
#self.AddData(TiingoDailyData, "EMB", Resolution.Daily)
#self.ticker = "PUTW"
#self.symbol = self.AddData(TiingoDailyData, self.ticker, Resolution.Daily).Symbol
self.AddEquity("SPY", Resolution.Daily)
if self.LiveMode:
self.Debug("Trading Live!")
self.SafetySymbols = []
# all symbols set
self.AllSymbols = list(set(self.GrowthSymbols) | set(self.SafetySymbols))
# open equity symbols
for symbol in self.GrowthSymbols:
self.AddEquity(symbol, Resolution.Daily)
# this doesn't do anything at the moment. We need to work out how to properly handles these assets
for symbol in self.SafetySymbols:
self.AddOption(symbol, Resolution.Daily)
# wait for warming up
self.SetWarmUp(self.WarmupTime)
# schedule the trading function
#self.Schedule.On(self.DateRules.MonthStart(self.MarketAsset), self.TimeRules.AfterMarketOpen(self.MarketAsset, 10), Action(self.RebalanceAndTrade))
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.MarketAsset, 10), Action(self.RebalanceAndTrade))
def OnData(self, slice):
if self.LiveMode: self.Debug("Running algorithm!!")
# Make sure all the data we need is in place
if self.IsWarmingUp: return
if not slice.ContainsKey("PUTW"):
self.Debug("PUTW not found!!")
return
if not slice.ContainsKey("EMB"):
self.Debug("EMB not found!!")
return
if self.LiveMode: self.Debug("Warm Up Complete Deciding..")
# trading function
def RebalanceAndTrade(self):
self.Notify.Email("danielqing@yahoo.com.au", "Current Time" + str(self.Time) , "Portfolio" + str(self.Portfolio))
# skipping if it is warming up
if self.IsWarmingUp: return
if self.Time.day != 5: return
self.Liquidate("AUDUSD")
# creating the pandas DataFrame
slices = self.History(self.AllSymbols, self.Window, Resolution.Daily)
slices_df = pd.pivot_table(slices, values = 'close', index='time', columns = 'symbol').reset_index()
slices_df = slices_df.drop(columns=['time'])
returns = slices_df.pct_change()
# for debugging
#self.Debug(self.Time)
#self.Debug(returns.shape)
# weights calculation
vol_weights = self.get_srp_weights(returns, self.vol_lookback)
cor_adjust = self.get_cor_adjustments(returns, self.corr_lookback)
cor_adjust_weights = self.adjust_weights(vol_weights, cor_adjust, shrinkage=1)
momo_adjusted_weights = self.get_momo_adjusted_weights(returns, cor_adjust_weights, self.formation_periods, self.z_score_cutoff, self.momo_multiplier)
# the following should contain asset EMB instead of EEM
capped_weights = self.cap_allocation_and_rescale(momo_adjusted_weights, ticker="EMB", cap=0.15)
# the following should VTI and PUTW but I don't know how to handle yet
final_weights = self.split_allocation(capped_weights, "VTI", "PUTW", ratio=0.5)
self.Debug(final_weights.shape)
self.Debug(self.Time)
self.Debug(final_weights)
# allocating assets
for i in range(len(final_weights)):
self.Log("{} : asset {}, allocating {}".format(self.Time, slices_df.columns[i], final_weights[i]))
self.SetHoldings(slices_df.columns[i], final_weights[i])
self.Notify.Email("danielqing@yahoo.com.au", "Current Time" + str(self.Time) , "Weight" + str(final_weights))
def get_srp_weights(self, returns, vol_lookback):
"""
returns current srp werights given a pandas DataFrame of returns and a vol_lookback period
"""
n_assets = len(returns.columns)
vols = returns.iloc[-vol_lookback:, :].apply(lambda x: np.std(x)*np.sqrt(252), axis=0)
raw_weights = 1/vols
weights = raw_weights/np.sum(raw_weights)
return weights
def get_cor_adjustments(self, returns, corr_lookback):
"""
returns current correlation adjustments given a pandas DataFrame of returns and a corr_lookback period
"""
cor = returns.iloc[-corr_lookback:, :].corr()
pairwise_ave_cor = cor.mean(axis=1)
zscore_pairwise_ave_cor = (pairwise_ave_cor - pairwise_ave_cor.mean())/pairwise_ave_cor.std()
gauss_scale = 1 - norm.cdf(zscore_pairwise_ave_cor, 0, 1)
raw_adjustments = gauss_scale/gauss_scale.sum()
norm_adjustments = raw_adjustments - 1./len(returns.columns)
return norm_adjustments
def adjust_weights(self, vol_weights, corr_adjustments, shrinkage):
raw_weights = vol_weights * (1 +corr_adjustments * shrinkage)
adj_weights = raw_weights/raw_weights.sum()
return adj_weights
def get_momo_adjustments(self, returns, formation_period):
"""
returns current cross-sectional zscore of total return momentum
given a pandas DataFrame of returns and formation_period
"""
synth_prices = (returns+1).cumprod()
roc = (synth_prices.iloc[-1,:]/synth_prices.iloc[-formation_period-1,:]-1)
momo_adjustments = (roc - roc.mean())/roc.std()
return momo_adjustments
def get_sma_slope_adjustments(self, returns, formation_period):
"""
returns current cross-sectional zscore of slope of moving average
given a pandes DataFrame of returns and a formation_period
"""
synth_prices = (returns+1).cumprod()
sma = synth_prices.iloc[-formation_period-1:,:].rolling(formation_period).mean()
sma_slope = (sma.iloc[-1,:]/sma.iloc[-2,:])-1
momo_adjustments = (sma_slope - sma_slope.mean())/sma_slope.std()
return momo_adjustments
def adjust_momo_weights(self, base_weights, momo_adjustments, z_score_cutoff, multiplier):
raw_weights = base_weights * (1 + ((momo_adjustments >= z_score_cutoff) * multiplier))
adj_weights = raw_weights/raw_weights.sum()
return adj_weights
def get_momo_adjusted_weights(self, returns, base_weights, formation_periods, z_score_cutoff, multiplier):
"""
returns current momentum-adjusted weights given a pandes DataFrame of returns and a formation_period
"""
momo_weights = base_weights
for period in formation_periods :
momo_adjustments = self.get_momo_adjustments(returns, period)
momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)
for period in formation_periods :
momo_adjustments = self.get_sma_slope_adjustments(returns, period)
momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)
return momo_weights
def cap_allocation_and_rescale(self, weights, ticker, cap=0.15):
"""
cap the allocation into ticker and rescale remaining weights
"""
if weights[ticker] > cap:
weights = (1-cap)*weights.drop(ticker)/weights.drop(ticker).sum()
weights[ticker] = cap
return weights
def split_allocation(self, weights, ticker, split_ticker, ratio=0.5):
"""
split the allocation into ticker into ticker and split_ticker according to ratio
"""
weights[split_ticker] = (1-ratio)*weights[ticker]
weights[ticker] = ratio*weights[ticker]
#global tradeable_universe
#if split_ticker not in tradeable_universe:
# tradeable_universe.append(split_ticker)
return weights
'''
# Duplicate code?
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Python import PythonQuandl
from QuantConnect.Securities.Equity import EquityExchange
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from scipy.stats import norm
#from QuantConnect.Data.Custom.Tiingo import *
from QuantConnect.Python import PythonQuandl # quandl data not CLOSE
from QuantConnect.Python import PythonData # custom data
from QuantConnect.Data import SubscriptionDataSource
# Risk Premia RW algorithm
class RPRWAlgorithm(QCAlgorithm):
def Initialize(self):
# Initial settings
self.SetStartDate(2019, 1, 1)
self.SetEndDate(2019, 8, 1)
self.SetCash(10000)
self.MarketAsset = "SPY"
self.WarmupTime = 310
self.Window = 300
#parameters
self.vol_lookback = 90
self.corr_lookback = 120
self.formation_periods = np.array([3, 6, 9, 12])*22
self.z_score_cutoff = 0
self.momo_multiplier = 0.1
# these are the growth symbols we'll rotate through
self.GrowthSymbols = ["VTI", # Vanguard Total Stock Market ETF
"SPY", # SPDR S&P 500 ETF Trust
"TLT", # iShares 20+ Year Treasury Bond ETF
"EFA", # iShares MSCI EAFE ETF
"EEM", # iShares J.P. Morgan USD Emerging Markets Bond ETF
"PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
"EMB"] # iShares J.P. Morgan USD Emerging Markets Bond ETF"
# these are the safety symbols we go to when things are looking bad for growth
# this part is not supposed to work
# I don't know how to open these assets
#self.SafetySymbols = "PUTW", # WisdomTree CBOE S&P 500 PutWrite Strategy Fund
# "EMB"] # iShares J.P. Morgan USD Emerging Markets Bond ETF"
#Tiingo.SetAuthCode("49e4ce130ce49c90d9e45193f70723b16c5e4ff7")
#self.AddData(TiingoDailyData, "PUTW", Resolution.Daily)
#self.AddData(TiingoDailyData, "EMB", Resolution.Daily)
#self.ticker = "PUTW"
#self.symbol = self.AddData(TiingoDailyData, self.ticker, Resolution.Daily).Symbol
#self.AddEquity("EMB", Resolution.Daily)
self.SafetySymbols = []
# all symbols set
self.AllSymbols = list(set(self.GrowthSymbols) | set(self.SafetySymbols))
# open equity symbols
for symbol in self.GrowthSymbols:
self.AddEquity(symbol, Resolution.Daily)
# this doesn't do anything at the moment. We need to work out how to properly handles these assets
for symbol in self.SafetySymbols:
self.AddOption(symbol, Resolution.Daily)
# wait for warming up
self.SetWarmUp(self.WarmupTime)
# schedule the trading function
self.Schedule.On(self.DateRules.MonthStart(self.MarketAsset), self.TimeRules.AfterMarketOpen(self.MarketAsset, 10), Action(self.RebalanceAndTrade))
def OnData(self, slice):
if self.LiveMode: self.Debug("Running algorithm!!")
# Make sure all the data we need is in place
if self.IsWarmingUp: return
if not slice.ContainsKey("PUTW"):
self.Debug("PUTW not found!!")
return
if not slice.ContainsKey("EMB"):
self.Debug("EMB not found!!")
return
if self.LiveMode: self.Debug("Warm Up Complete Deciding..")
# trading function
def RebalanceAndTrade(self):
# skipping if it is warming up
if self.IsWarmingUp: return
# creating the pandas DataFrame
slices = self.History(self.AllSymbols, self.Window, Resolution.Daily)
slices_df = pd.pivot_table(slices, values = 'close', index='time', columns = 'symbol').reset_index()
slices_df = slices_df.drop(columns=['time'])
returns = slices_df.pct_change()
# for debugging
#self.Debug(self.Time)
#self.Debug(returns.shape)
# weights calculation
vol_weights = self.get_srp_weights(returns, self.vol_lookback)
cor_adjust = self.get_cor_adjustments(returns, self.corr_lookback)
cor_adjust_weights = self.adjust_weights(vol_weights, cor_adjust, shrinkage=1)
momo_adjusted_weights = self.get_momo_adjusted_weights(returns, cor_adjust_weights, self.formation_periods, self.z_score_cutoff, self.momo_multiplier)
# the following should contain asset EMB instead of EEM
capped_weights = self.cap_allocation_and_rescale(momo_adjusted_weights, ticker="EMB", cap=0.15)
# the following should VTI and PUTW but I don't know how to handle yet
final_weights = self.split_allocation(capped_weights, "VTI", "PUTW", ratio=0.5)
self.Debug(final_weights.shape)
# allocating assets
for i in range(len(final_weights)):
self.Log("{} : asset {}, allocating {}".format(self.Time, slices_df.columns[i], final_weights[i]))
self.SetHoldings(slices_df.columns[i], final_weights[i])
def get_srp_weights(self, returns, vol_lookback):
"""
returns current srp werights given a pandas DataFrame of returns and a vol_lookback period
"""
n_assets = len(returns.columns)
vols = returns.iloc[-vol_lookback:, :].apply(lambda x: np.std(x)*np.sqrt(252), axis=0)
raw_weights = 1/vols
weights = raw_weights/np.sum(raw_weights)
return weights
def get_cor_adjustments(self, returns, corr_lookback):
"""
returns current correlation adjustments given a pandas DataFrame of returns and a corr_lookback period
"""
cor = returns.iloc[-corr_lookback:, :].corr()
pairwise_ave_cor = cor.mean(axis=1)
zscore_pairwise_ave_cor = (pairwise_ave_cor - pairwise_ave_cor.mean())/pairwise_ave_cor.std()
gauss_scale = 1 - norm.cdf(zscore_pairwise_ave_cor, 0, 1)
raw_adjustments = gauss_scale/gauss_scale.sum()
norm_adjustments = raw_adjustments - 1./len(returns.columns)
return norm_adjustments
def adjust_weights(self, vol_weights, corr_adjustments, shrinkage):
raw_weights = vol_weights * (1 +corr_adjustments * shrinkage)
adj_weights = raw_weights/raw_weights.sum()
return adj_weights
def get_momo_adjustments(self, returns, formation_period):
"""
returns current cross-sectional zscore of total return momentum
given a pandas DataFrame of returns and formation_period
"""
synth_prices = (returns+1).cumprod()
roc = (synth_prices.iloc[-1,:]/synth_prices.iloc[-formation_period-1,:]-1)
momo_adjustments = (roc - roc.mean())/roc.std()
return momo_adjustments
def get_sma_slope_adjustments(self, returns, formation_period):
"""
returns current cross-sectional zscore of slope of moving average
given a pandes DataFrame of returns and a formation_period
"""
synth_prices = (returns+1).cumprod()
sma = synth_prices.iloc[-formation_period-1:,:].rolling(formation_period).mean()
sma_slope = (sma.iloc[-1,:]/sma.iloc[-2,:])-1
momo_adjustments = (sma_slope - sma_slope.mean())/sma_slope.std()
return momo_adjustments
def adjust_momo_weights(self, base_weights, momo_adjustments, z_score_cutoff, multiplier):
raw_weights = base_weights * (1 + ((momo_adjustments >= z_score_cutoff) * multiplier))
adj_weights = raw_weights/raw_weights.sum()
return adj_weights
def get_momo_adjusted_weights(self, returns, base_weights, formation_periods, z_score_cutoff, multiplier):
"""
returns current momentum-adjusted weights given a pandes DataFrame of returns and a formation_period
"""
momo_weights = base_weights
for period in formation_periods :
momo_adjustments = self.get_momo_adjustments(returns, period)
momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)
for period in formation_periods :
momo_adjustments = self.get_sma_slope_adjustments(returns, period)
momo_weights = self.adjust_momo_weights(momo_weights, momo_adjustments, z_score_cutoff, multiplier)
return momo_weights
def cap_allocation_and_rescale(self, weights, ticker, cap=0.15):
"""
cap the allocation into ticker and rescale remaining weights
"""
if weights[ticker] > cap:
weights = (1-cap)*weights.drop(ticker)/weights.drop(ticker).sum()
weights[ticker] = cap
return weights
def split_allocation(self, weights, ticker, split_ticker, ratio=0.5):
"""
split the allocation into ticker into ticker and split_ticker according to ratio
"""
weights[split_ticker] = (1-ratio)*weights[ticker]
weights[ticker] = ratio*weights[ticker]
#global tradeable_universe
#if split_ticker not in tradeable_universe:
# tradeable_universe.append(split_ticker)
return weights
'''