| Overall Statistics |
|
Total Orders 3 Average Win 0% Average Loss -1.01% Compounding Annual Return 260.532% Drawdown 2.200% Expectancy -1 Start Equity 100000 End Equity 101653.13 Net Profit 1.653% Sharpe Ratio 8.454 Sortino Ratio 0 Probabilistic Sharpe Ratio 66.805% Loss Rate 100% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.095 Beta 1.007 Annual Standard Deviation 0.224 Annual Variance 0.05 Information Ratio -33.464 Tracking Error 0.002 Treynor Ratio 1.881 Total Fees $10.80 Estimated Strategy Capacity $27000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 59.91% |
# region imports
from AlgorithmImports import *
# endregion
class AlertBlueScorpion(QCAlgorithm):
def initialize(self):
'''initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.'''
# Set requested data resolution
self.universe_settings.resolution = Resolution.MINUTE
self.set_start_date(2013,10,7) #Set Start Date
self.set_end_date(2013,10,11) #Set End Date
self.set_cash(100000) #Set Strategy Cash
# Find more symbols here: http://quantconnect.com/data
# Forex, CFD, Equities Resolutions: Tick, Second, Minute, Hour, Daily.
# Futures Resolution: Tick, Second, Minute
# Options Resolution: Minute Only.
symbols = [ Symbol.create("SPY", SecurityType.EQUITY, Market.USA) ]
# set algorithm framework models
self.set_universe_selection(ManualUniverseSelectionModel(symbols))
self.set_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(minutes = 20), 0.025, None))
# We can define how often the EWPCM will rebalance if no new insight is submitted using:
# Resolution Enum:
self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Resolution.DAILY))
# timedelta
# self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(timedelta(2)))
# A lamdda datetime -> datetime. In this case, we can use the pre-defined func at Expiry helper class
# self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel(Expiry.END_OF_WEEK))
self.set_execution(ImmediateExecutionModel())
self.set_risk_management(MaximumDrawdownPercentPerSecurity(0.01))
self.debug("numpy test >>> print numpy.pi: " + str(np.pi))
def on_order_event(self, order_event):
if order_event.status == OrderStatus.FILLED:
self.debug("Purchased Stock: {0}".format(order_event.symbol))