| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -11.711 Tracking Error 0.033 Treynor Ratio 0 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from QuantConnect.Securities.Option import OptionPriceModels
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from datetime import timedelta
### <summary>
### This example demonstrates how to add options for a given underlying equity security.
### It also shows how you can prefilter contracts easily based on strikes and expirations.
### It also shows how you can inspect the option chain to pick a specific option contract to trade.
### </summary>
### <meta name="tag" content="using data" />
### <meta name="tag" content="options" />
### <meta name="tag" content="filter selection" />
class BasicTemplateOptionsFilterUniverseAlgorithm(QCAlgorithm):
UnderlyingTicker = "SPY"
def Initialize(self):
self.SetStartDate(2019, 12, 16)
self.SetEndDate(2019, 12, 24)
self.SetCash(100000)
equity = self.AddEquity(self.UnderlyingTicker);
option = self.AddOption(self.UnderlyingTicker)
self.option_symbol = option.Symbol
# set our strike/expiry filter for this option chain
# SetFilter method accepts timedelta objects or integer for days.
# The following statements yield the same filtering criteria
#option.SetFilter(-5, +5, 0, 30)
# option.SetFilter(-10, 10, timedelta(0), timedelta(10))
option.SetFilter(self.UniverseFunc)
#option.PriceModel = OptionPriceModels.CrankNicolsonFD()
option.PriceModel = OptionPriceModels.BaroneAdesiWhaley()
self.SetWarmUp(3) # timedelta(7)
# use the underlying equity as the benchmark
self.SetBenchmark(equity.Symbol)
def OnData(self,slice):
if self.IsWarmingUp: return
if self.Portfolio.Invested: return
if self.Time.hour > 10: return
for kvp in slice.OptionChains:
if kvp.Key != self.option_symbol: continue
chain = kvp.Value
# find the call options expiring today
#contracts = [i for i in chain if i.Right == OptionRight.Call and i.Expiry.date() == self.Time.date()]
contracts = [i for i in chain if i.Right == OptionRight.Call and (i.Expiry.date() - self.Time.date()).days == 0]
# sorted the contracts by their strike, find the second strike under market price
sorted_contracts = [i for i in sorted(contracts, key = lambda x:x.Strike, reverse = True) if i.Strike < chain.Underlying.Price]
# if found, trade it
if len(sorted_contracts) == 0:
#self.Log("No call contracts expiring today")
return
self.Log(f"delta {sorted_contracts[1].Greeks.Delta}")
#self.MarketOrder(sorted_contracts[1].Symbol, 1)
def OnOrderEvent(self, orderEvent):
# Order fill event handler. On an order fill update the resulting information is passed to this method.
# <param name="orderEvent">Order event details containing details of the evemts</param>
self.Log(str(orderEvent))
def UniverseFunc(self, universe):
#self.Log("update universe")
return universe.IncludeWeeklys()\
.Strikes(-20, 20)\
.Expiration(0, 10)