| Overall Statistics |
|
Total Orders 3034 Average Win 0.19% Average Loss -0.13% Compounding Annual Return 31.816% Drawdown 18.400% Expectancy 0.421 Start Equity 10000000 End Equity 22932531.08 Net Profit 129.325% Sharpe Ratio 0.96 Sortino Ratio 1.198 Probabilistic Sharpe Ratio 59.878% Loss Rate 41% Win Rate 59% Profit-Loss Ratio 1.41 Alpha 0.059 Beta 0.964 Annual Standard Deviation 0.186 Annual Variance 0.035 Information Ratio 0.415 Tracking Error 0.131 Treynor Ratio 0.185 Total Fees $270132.53 Estimated Strategy Capacity $17000.00 Lowest Capacity Asset USM R735QTJ8XC9X Portfolio Turnover 4.45% Drawdown Recovery 135 |
# region imports
from AlgorithmImports import *
from universe import PiotroskiScoreUniverseSelectionModel
# endregion
class PiotroskiScoreAlgorithm(QCAlgorithm):
def initialize(self):
# Algorithm cash and period setup
self.set_cash(10_000_000)
self.set_start_date(2022, 10, 1)
self.set_end_date(2025, 10, 1)
# Configure settings to rebalance monthly.
rebalance_date = self.date_rules.month_start(Symbol.create('SPY', SecurityType.EQUITY, Market.USA))
# Universe settings
self.universe_settings.schedule.on(rebalance_date)
self.universe_settings.resolution = Resolution.HOUR
self.settings.rebalance_portfolio_on_insight_changes = False
self.add_universe_selection(PiotroskiScoreUniverseSelectionModel(
self.get_parameter("score_threshold", 7),
self.get_parameter("roa_multiple", 1),
self.get_parameter('universe_size', 100)
))
# Long only strategy on selected assets
self.add_alpha(ConstantAlphaModel(InsightType.PRICE, InsightDirection.UP, timedelta(30)))
# Weight sectors equally
self.set_portfolio_construction(SectorWeightingPortfolioConstructionModel(rebalance_date))
# Avoid illiquid assets. Maximum 1% spread allowed before execution
self.set_execution(SpreadExecutionModel(0.01))
# region imports
from AlgorithmImports import *
# endregion
class PiotroskiScore:
def __init__(self, roa_multiple):
self._roa_multiple = roa_multiple
def get_score(self, fundamental):
return (
self.get_r_o_a_score(fundamental)
+ self.get_operating_cash_flow_score(fundamental)
+ self.get_r_o_a_change_score(fundamental)
+ self.get_accruals_score(fundamental)
+ self.get_leverage_score(fundamental)
+ self.get_liquidity_score(fundamental)
+ self.get_share_issued_score(fundamental)
+ self.get_gross_margin_score(fundamental)
+ self.get_asset_turnover_score(fundamental)
)
def get_r_o_a_score(self, fundamental, classify=True):
'''Get the Profitability - Return of Asset sub-score of Piotroski F-Score'''
# Nearest ROA as current year data
roa = fundamental.operation_ratios.ROA.three_months
if not classify:
return roa
# 1 score if ROA datum exists and positive, else 0
return self._roa_multiple * int(roa and roa > 0)
def get_operating_cash_flow_score(self, fundamental, classify=True):
'''Get the Profitability - Operating Cash Flow sub-score of Piotroski F-Score'''
# Nearest Operating Cash Flow as current year data
operating_cashflow = fundamental.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
if not classify:
return operating_cashflow
# 1 score if operating cash flow datum exists and positive, else 0
return int(operating_cashflow and operating_cashflow > 0)
def get_r_o_a_change_score(self, fundamental, classify=True):
'''Get the Profitability - Change in Return of Assets sub-score of Piotroski F-Score'''
# if current or previous year's ROA data does not exist, return 0 score
roa = fundamental.operation_ratios.ROA
if not roa.three_months or not roa.one_year:
return 0
if not classify:
return roa.three_months - roa.one_year
# 1 score if change in ROA positive, else 0 score
return int(roa.three_months > roa.one_year)
def get_accruals_score(self, fundamental, classify=True):
'''Get the Profitability - Accruals sub-score of Piotroski F-Score'''
# Nearest Operating Cash Flow, Total Assets, ROA as current year data
operating_cashflow = fundamental.financial_statements.cash_flow_statement.cash_flow_from_continuing_operating_activities.three_months
total_assets = fundamental.financial_statements.balance_sheet.total_assets.three_months
roa = fundamental.operation_ratios.ROA.three_months
if not classify:
return operating_cashflow / total_assets - roa if total_assets else None
# 1 score if operating cash flow, total assets and ROA exists, and operating cash flow / total assets > ROA, else 0
return int(operating_cashflow and total_assets and roa and operating_cashflow / total_assets > roa)
def get_leverage_score(self, fundamental, classify=True):
'''Get the Leverage, Liquidity and Source of Funds - Change in Leverage sub-score of Piotroski F-Score'''
# if current or previous year's long term debt to equity ratio data does not exist, return 0 score
long_term_debt_ratio = fundamental.operation_ratios.long_term_debt_equity_ratio
if not long_term_debt_ratio.three_months or not long_term_debt_ratio.one_year:
return 0
if not classify:
return long_term_debt_ratio.three_months - long_term_debt_ratio.one_year
# 1 score if long term debt ratio is lower in the current year, else 0 score
return int(long_term_debt_ratio.three_months < long_term_debt_ratio.one_year)
def get_liquidity_score(self, fundamental, classify=True):
'''Get the Liquidity score'''
# if current or previous year's current ratio data does not exist, return 0 score
current_ratio = fundamental.operation_ratios.current_ratio
if not current_ratio.three_months or not current_ratio.one_year:
return 0
if not classify:
return current_ratio.three_months - current_ratio.one_year
# 1 score if current ratio is higher in the current year, else 0 score
return int(current_ratio.three_months > current_ratio.one_year)
def get_share_issued_score(self, fundamental, classify=True):
'''Get the share issued score'''
# if current or previous year's issued shares data does not exist, return 0 score
shares_issued = fundamental.financial_statements.balance_sheet.share_issued
if not shares_issued.three_months or not shares_issued.twelve_months:
return 0
if not classify:
return shares_issued.three_months - shares_issued.twelve_months
# 1 score if shares issued did not increase in the current year, else 0 score
return int(shares_issued.three_months <= shares_issued.twelve_months)
def get_gross_margin_score(self, fundamental, classify=True):
'''Get the gross margin score'''
# if current or previous year's gross margin data does not exist, return 0 score
gross_margin = fundamental.operation_ratios.gross_margin
if not gross_margin.three_months or not gross_margin.one_year:
return 0
if not classify:
return gross_margin.three_months - gross_margin.one_year
# 1 score if gross margin is higher in the current year, else 0 score
return int(gross_margin.three_months > gross_margin.one_year)
def get_asset_turnover_score(self, fundamental, classify=True):
'''Get the asset turnover score'''
# if current or previous year's asset turnover data does not exist, return 0 score
asset_turnover = fundamental.operation_ratios.assets_turnover
if not asset_turnover.three_months or not asset_turnover.one_year:
return 0
if not classify:
return asset_turnover.three_months - asset_turnover.one_year
# 1 score if asset turnover is higher in the current year, else 0 score
return int(asset_turnover.three_months > asset_turnover.one_year)# region imports
from AlgorithmImports import *
from piotroski_score import PiotroskiScore
# endregion
class PiotroskiScoreUniverseSelectionModel(FundamentalUniverseSelectionModel):
def __init__(self, threshold, roa_multiple=1, universe_size=100):
super().__init__(self._select_assets)
self._piotroski_score = PiotroskiScore(roa_multiple)
self._threshold = threshold
self._universe_size = universe_size
def _select_assets(self, fundamentals):
# We use a dictionary to hold the F-Score of each stock
f_scores = {
f.symbol: self._piotroski_score.get_score(f) for f in fundamentals
# We only want stocks with fundamental data and price > $1
if f.has_fundamental_data and f.price > 1 and f.dollar_volume > 100_000
}
# Modified:
# Select stocks with the highest F-Score, and take the top 100:
top_symbols = [
symbol for symbol, score in sorted(
f_scores.items(), key=lambda x: x[1], reverse=True
) if score >= self._threshold
][:self._universe_size]
return top_symbols
# Original Paper:
# Select ALL stocks over the threshold.
#return [symbol for symbol, fscore in f_scores.items() if fscore >= self._threshold]