| Overall Statistics |
|
Total Trades 62 Average Win 8.14% Average Loss -0.22% Compounding Annual Return 32.628% Drawdown 46.000% Expectancy 35.939 Net Profit 1908.342% Sharpe Ratio 1.409 Probabilistic Sharpe Ratio 73.421% Loss Rate 3% Win Rate 97% Profit-Loss Ratio 37.21 Alpha 0.295 Beta 0.577 Annual Standard Deviation 0.266 Annual Variance 0.071 Information Ratio 0.915 Tracking Error 0.258 Treynor Ratio 0.651 Total Fees $903.21 |
# Inspired by the theory here:
# https://seekingalpha.com/article/4299701-leveraged-etfs-for-long-term-investing
class MultidimensionalTransdimensionalPrism(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2009, 9, 1) # Earliest start date for all ETFs in universe 2/1/10
self.SetEndDate(2020, 4, 13)
self.SetCash(100000)
self.AddEquity("TQQQ", Resolution.Minute) # 3x QQQ
self.AddEquity("TMF", Resolution.Minute) # 3x 20yr Treasury
self.tkr = ["TQQQ", "TMF"]
self.rebal = 4 # Rebalance every 2 weeks
self.rebalTimer = self.rebal - 1 # Initialize to trigger first week
self.flag1 = 0 # Flag to initate trades
# Increment rebalance timer at every week start
self.Schedule.On(self.DateRules.MonthEnd("TQQQ"),self.TimeRules.BeforeMarketClose("TQQQ",25), self.Rebalance)
def OnData(self, data):
# If ready to rebalance, set each holding at 1/2
if self.flag1 == 1:
for stock in self.tkr:
self.SetHoldings(stock, 0.50)
self.rebalTimer = 0 # Reset rebalance timer
self.flag1 = 0
def Rebalance(self):
self.rebalTimer +=1
if self.rebalTimer == self.rebal:
self.flag1 = 1