| Overall Statistics |
|
Total Trades 1016 Average Win 1.27% Average Loss -0.52% Compounding Annual Return 26.078% Drawdown 18.000% Expectancy 1.212 Net Profit 2107.690% Sharpe Ratio 1.384 Probabilistic Sharpe Ratio 85.327% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 2.46 Alpha 0.218 Beta 0.075 Annual Standard Deviation 0.163 Annual Variance 0.027 Information Ratio 0.52 Tracking Error 0.237 Treynor Ratio 2.998 Total Fees $1216.94 Estimated Strategy Capacity $1800.00 |
"""
SEL(stock selection part)
Based on the 'Momentum Strategy with Market Cap and EV/EBITDA' strategy introduced by Jing Wu, 6 Feb 2018
adapted and recoded by Jack Simonson, Goldie Yalamanchi, Vladimir, Peter Guenther, Leandro Maia, Simone Pantaleoni, Mirko Vari(Strongs)
https://www.quantconnect.com/forum/discussion/3377/momentum-strategy-with-market-cap-and-ev-ebitda/p1
https://www.quantconnect.com/forum/discussion/9678/quality-companies-in-an-uptrend/p1
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p1
I/O(in & out part)
The Distilled Bear in & out algo
based on Dan Whitnable's 22 Oct 2020 algo on Quantopian.
Dan's original notes:
"This is based on Peter Guenther great “In & Out” algo.
Included Tentor Testivis recommendation to use volatility adaptive calculation of WAIT_DAYS and RET.
Included Vladimir's ideas to eliminate fixed constants
Help from Thomas Chang"
https://www.quantopian.com/posts/new-strategy-in-and-out
https://www.quantconnect.com/forum/discussion/9597/the-in-amp-out-strategy-continued-from-quantopian/
"""
from QuantConnect.Data.UniverseSelection import *
import math
import numpy as np
import pandas as pd
import scipy as sp
class EarningsFactorWithMomentum_InOut(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) #Set Start Date
#self.SetEndDate(2021, 5, 1) #Set Start Date
self.cap = 10000
self.SetCash(self.cap)
self.averages = { }
res = Resolution.Hour
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.quantity = {self.BND1: 0}
##### In & Out parameters #####
# Feed-in constants
self.INI_WAIT_DAYS = 15 # out for 3 trading weeks
self.wait_days = self.INI_WAIT_DAYS
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.AddEquity('XLI', res).Symbol # vs industrials
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU, self.METL, self.USDX]
# Specific variables
self.DISTILLED_BEAR = 1#999
self.BE_IN = 1#999
self.BE_IN_PRIOR = 0
self.VOLA_LOOKBACK = 126
self.WAITD_CONSTANT = 85
self.DCOUNT = 0 # count of total days since start
self.OUTDAY = (-self.INI_WAIT_DAYS+1) # dcount when self.be_in=0, initial setting ensures trading right away
# set a warm-up period to initialize the indicator
self.SetWarmUp(timedelta(350))
##### Momentum & fundamentals strategy parameters #####
self.UniverseSettings.Resolution = res
self.AddUniverse(self.UniverseCoarseFilter, self.UniverseFundamentalsFilter)
self.num_coarse = 100#200
self.num_screener = 20#100 # changed from 15
self.num_stocks = 10 # lowered from 10
self.formation_days = 126
self.lowmom = False
self.data = {}
self.setrebalancefreq = 60 # X days, update universe and momentum calculation
self.updatefinefilter = 0
self.symbols = None
self.reb_count = 0
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 30), # reduced time
self.rebalance_when_out_of_the_market)
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose('SPY', 0),
self.record_vars)
# Benchmark = record SPY
self.spy = []
# Setup daily consolidation
symbols = [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.lookback = 126
self.history = self.History(symbols, self.lookback, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
'''def UniverseCoarseFilter(self, coarse):
if not (((self.DCOUNT-self.reb_count)==self.setrebalancefreq) or (self.DCOUNT == self.OUTDAY + self.wait_days - 1)):
self.updatefinefilter = 0
return Universe.Unchanged
self.updatefinefilter = 1
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# rank the stocks by dollar volume
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in filtered[:self.num_coarse]]'''
def UniverseCoarseFilter(self, coarse):
# Update at the beginning (by setting self.OUTDAY = -self.INI_WAIT_DAYS), every X days (rebalance frequency), and one day before waitdays are up
if not (((self.DCOUNT-self.reb_count)==self.setrebalancefreq) or (self.DCOUNT == self.OUTDAY + self.wait_days - 1)):
self.updatefinefilter = 0
return Universe.Unchanged
self.updatefinefilter = 1
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
# We are going to use a dictionary to refer the object that will keep the moving averages
for cf in selected:
symbol = cf.Symbol
if cf.Symbol not in self.averages:
self.averages[cf.Symbol] = SymbolDataVolume(cf.Symbol, 21, 5, 504)
# Updates the SymbolData object with current EOD price
avg = self.averages[cf.Symbol]
avg.update(cf.EndTime, cf.AdjustedPrice, cf.DollarVolume)
# Filter the values of the dict: we only want up-trending securities
#values = list(filter(lambda sd: sd.smaw.Current.Value > 0, self.averages.values()))
values = list(filter(lambda sd: sd.smaw.Current.Value > 0, self.averages.values()))
values.sort(key=lambda x: (x.smaw.Current.Value), reverse=True)
#values.sort(key=lambda x: (x.volume_ratiol), reverse=True)
# we need to return only the symbol objects
return [ x.symbol for x in values[:self.num_coarse] ]
def UniverseFundamentalsFilter(self, fundamental):
if self.updatefinefilter == 0:
return Universe.Unchanged
filtered_fundamental = [x for x in fundamental if
x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths and
x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths and
x.OperationRatios.ROA.ThreeMonths and x.OperationRatios.ROA.OneYear and
x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths and x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths and
x.OperationRatios.GrossMargin.ThreeMonths and x.OperationRatios.GrossMargin.OneYear and
x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths and x.OperationRatios.LongTermDebtEquityRatio.OneYear and
x.OperationRatios.CurrentRatio.ThreeMonths and x.OperationRatios.CurrentRatio.OneYear and
x.OperationRatios.AssetsTurnover.ThreeMonths and x.OperationRatios.AssetsTurnover.OneYear and x.ValuationRatios.NormalizedPERatio]
sortedByfactor1 = [x for x in fundamental if FScore(x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths,
x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths,
x.OperationRatios.ROA.ThreeMonths, x.OperationRatios.ROA.OneYear,
x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths, x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths,
x.OperationRatios.GrossMargin.ThreeMonths, x.OperationRatios.GrossMargin.OneYear,
x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths, x.OperationRatios.LongTermDebtEquityRatio.OneYear,
x.OperationRatios.CurrentRatio.ThreeMonths, x.OperationRatios.CurrentRatio.OneYear,
x.OperationRatios.AssetsTurnover.ThreeMonths, x.OperationRatios.AssetsTurnover.OneYear).ObjectiveScore() > 6]
top = sorted(sortedByfactor1, key = lambda x: x.ValuationRatios.NormalizedPERatio, reverse=False)[:self.num_screener]
self.symbols = [x.Symbol for x in top]
self.updatefinefilter = 0
self.reb_count = self.DCOUNT
return self.symbols
def OnSecuritiesChanged(self, changes):
#for security in changes.RemovedSecurities:
# symbol_data = self.data.pop(security.Symbol, None)
# if symbol_data:
# symbol_data.dispose()
#for security in changes.AddedSecurities:
# if security.Symbol not in self.data:
# self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self)
addedSymbols = []
for security in changes.AddedSecurities:
addedSymbols.append(security.Symbol)
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, self.formation_days, self)
if len(addedSymbols) > 0:
history = self.History(addedSymbols, 1 + self.formation_days, Resolution.Daily).loc[addedSymbols]
for symbol in addedSymbols:
try:
self.data[symbol].Warmup(history.loc[symbol])
except:
self.Debug(str(symbol))
continue
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-self.lookback:]
def derive_vola_waitdays(self):
volatility = 0.6 * np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252)
wait_days = int(volatility * self.WAITD_CONSTANT)
returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT)
return wait_days, returns_lookback
def rebalance_when_out_of_the_market(self):
self.wait_days, returns_lookback = self.derive_vola_waitdays()
## Check for Bears
returns = self.history.pct_change(returns_lookback).iloc[-1]
silver_returns = returns[self.SLVA]
gold_returns = returns[self.GOLD]
industrials_returns = returns[self.INDU]
utilities_returns = returns[self.UTIL]
metals_returns = returns[self.METL]
dollar_returns = returns[self.USDX]
self.DISTILLED_BEAR = (((gold_returns > silver_returns) and
(utilities_returns > industrials_returns)) and
(metals_returns < dollar_returns)
)
# Determine whether 'in' or 'out' of the market
if self.DISTILLED_BEAR:
self.BE_IN = False
self.OUTDAY = self.DCOUNT
if self.quantity[self.BND1] == 0:
for symbol in self.quantity.copy().keys():
if symbol == self.BND1: continue
self.Order(symbol, - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])])
del self.quantity[symbol]
quantity = self.Portfolio.TotalPortfolioValue / self.Securities[self.BND1].Close
self.quantity[self.BND1] = math.floor(quantity)
self.Order(self.BND1, self.quantity[self.BND1])
self.Debug([str(self.Time), str(self.BND1), str(self.quantity[self.BND1])])
if (self.DCOUNT >= self.OUTDAY + self.wait_days):
self.BE_IN = True
# Update stock ranking/holdings, when swithing from 'out' to 'in' plus every X days when 'in' (set rebalance frequency)
if (self.BE_IN and not self.BE_IN_PRIOR) or (self.BE_IN and (self.DCOUNT==self.reb_count)):
self.rebalance()
self.BE_IN_PRIOR = self.BE_IN
self.DCOUNT += 1
def rebalance(self):
if self.symbols is None: return
chosen_df = self.calc_return(self.symbols)
chosen_df = chosen_df.iloc[:self.num_stocks]
if self.quantity[self.BND1] > 0:
self.Order(self.BND1, - self.quantity[self.BND1])
self.Debug([str(self.Time), str(self.BND1), str(-self.quantity[self.BND1])])
self.quantity[self.BND1] = 0
weight = 1 / self.num_stocks
for symbol in self.quantity.copy().keys():
if symbol == self.BND1: continue
if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None:
continue
if symbol not in chosen_df.index:
self.Order(symbol, - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(-self.quantity[symbol])])
del self.quantity[symbol]
else:
quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close
if math.floor(quantity) != self.quantity[symbol]:
self.Order(symbol, math.floor(quantity) - self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(math.floor(quantity) -self.quantity[symbol])])
self.quantity[symbol] = math.floor(quantity)
for symbol in chosen_df.index:
if not self.CurrentSlice.ContainsKey(symbol) or self.CurrentSlice[symbol] is None:
continue
if symbol not in self.quantity.keys():
quantity = self.Portfolio.TotalPortfolioValue * weight / self.Securities[symbol].Close
self.quantity[symbol] = math.floor(quantity)
self.Order(symbol, self.quantity[symbol])
self.Debug([str(self.Time), str(symbol), str(self.quantity[symbol])])
def calc_return(self, stocks):
#ready = [self.data[symbol] for symbol in stocks if self.data[symbol].Roc.IsReady]
#sorted_by_roc = sorted(ready, key=lambda x: x.Roc.Current.Value, reverse = not self.lowmom)
#return [symbol_data.Symbol for symbol_data in sorted_by_roc[:self.num_stocks] ]
ret = {}
for symbol in stocks:
try:
ret[symbol] = self.data[symbol].Roc.Current.Value
except:
self.Debug(str(symbol))
continue
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = self.lowmom)
return sort_return
def record_vars(self):
self.spy.append(self.history[self.MRKT].iloc[-1])
spy_perf = self.spy[-1] / self.spy[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 0))
class SymbolData(object):
def __init__(self, symbol, roc, algorithm):
self.Symbol = symbol
self.Roc = RateOfChange(roc)
self.algorithm = algorithm
self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily)
algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator)
def Warmup(self, history):
for index, row in history.iterrows():
self.Roc.Update(index, row['close'])
class SymbolDataVolume(object):
def __init__(self, symbol, period, periodw, periodlt):
self.symbol = symbol
#self.tolerance = 1.01
self.tolerance = 0.95
self.fast = ExponentialMovingAverage(10)
self.slow = ExponentialMovingAverage(21)
self.is_uptrend = False
self.scale = 0
self.volume = 0
self.volume_ratio = 0
self.volume_ratiow = 0
self.volume_ratiol = 0
self.sma = SimpleMovingAverage(period)
self.smaw = SimpleMovingAverage(periodw)
self.smalt = SimpleMovingAverage(periodlt)
def update(self, time, value, volume):
self.volume = volume
if self.smaw.Update(time, volume):
# get ratio of this volume bar vs previous 10 before it.
if self.smaw.Current.Value != 0:
self.volume_ratiow = volume / self.smaw.Current.Value
if self.sma.Update(time, volume):
# get ratio of this volume bar vs previous 10 before it.
if self.sma.Current.Value != 0:
self.volume_ratio = self.smaw.Current.Value / self.sma.Current.Value
if self.smalt.Update(time, volume):
if self.smalt.Current.Value != 0 and self.smaw.Current.Value != 0:
self.volume_ratiol = self.smaw.Current.Value / self.smalt.Current.Value
if self.fast.Update(time, value) and self.slow.Update(time, value):
fast = self.fast.Current.Value
slow = self.slow.Current.Value
#self.is_uptrend = fast > slow * self.tolerance
self.is_uptrend = (fast > (slow * self.tolerance)) and (value > (fast * self.tolerance))
if self.is_uptrend:
self.scale = (fast - slow) / ((fast + slow) / 2.0)
class FScore(object):
def __init__(self, netincome, operating_cashflow, roa_current,
roa_past, issued_current, issued_past, grossm_current, grossm_past,
longterm_current, longterm_past, curratio_current, curratio_past,
assetturn_current, assetturn_past):
self.netincome = netincome
self.operating_cashflow = operating_cashflow
self.roa_current = roa_current
self.roa_past = roa_past
self.issued_current = issued_current
self.issued_past = issued_past
self.grossm_current = grossm_current
self.grossm_past = grossm_past
self.longterm_current = longterm_current
self.longterm_past = longterm_past
self.curratio_current = curratio_current
self.curratio_past = curratio_past
self.assetturn_current = assetturn_current
self.assetturn_past = assetturn_past
def ObjectiveScore(self):
fscore = 0
fscore += np.where(self.netincome > 0, 1, 0)
fscore += np.where(self.operating_cashflow > 0, 1, 0)
fscore += np.where(self.roa_current > self.roa_past, 1, 0)
fscore += np.where(self.operating_cashflow > self.roa_current, 1, 0)
fscore += np.where(self.longterm_current <= self.longterm_past, 1, 0)
fscore += np.where(self.curratio_current >= self.curratio_past, 1, 0)
fscore += np.where(self.issued_current <= self.issued_past, 1, 0)
fscore += np.where(self.grossm_current >= self.grossm_past, 1, 0)
fscore += np.where(self.assetturn_current >= self.assetturn_past, 1, 0)
return fscore