| Overall Statistics |
|
Total Orders 347 Average Win 4.28% Average Loss -2.45% Compounding Annual Return 11.414% Drawdown 32.600% Expectancy 0.271 Start Equity 1000000 End Equity 2683193 Net Profit 168.319% Sharpe Ratio 0.438 Sortino Ratio 0.384 Probabilistic Sharpe Ratio 6.193% Loss Rate 54% Win Rate 46% Profit-Loss Ratio 1.75 Alpha 0.049 Beta 0.188 Annual Standard Deviation 0.15 Annual Variance 0.022 Information Ratio -0.113 Tracking Error 0.19 Treynor Ratio 0.35 Total Fees $0.00 Estimated Strategy Capacity $3600000.00 Lowest Capacity Asset SPX 32OCJW1R54RXQ|SPX 31 Portfolio Turnover 0.72% |
# region imports
from AlgorithmImports import *
from itertools import groupby
from sklearn.cluster import KMeans
# endregion
class IVRankClustersAlgorithm(QCAlgorithm):
def initialize(self):
self.set_start_date(2016, 1, 1)
self.set_end_date(2025, 2, 14)
self.set_cash(1_000_000)
self._gld = self.add_equity('GLD')
self._option = self.add_index_option('SPX')
self._option.set_filter(lambda universe: universe.include_weeklys().expiration(30, 90).strikes(-1, 1))
self._option.iv_rank = IVRank()
self._strategy = None
self.schedule.on(self.date_rules.every_day(self._gld.symbol), self.time_rules.after_market_open(self._gld.symbol, 1), self._rebalance)
self.set_warm_up(timedelta(365)) # Warm-up the IV Rank indicator.
def _rebalance(self):
# Update the IV Rank indicator.
chain = self.current_slice.option_chains.get(self._option.symbol)
if not chain or not self._option.iv_rank.update(chain) or self.is_warming_up:
return
self.plot('IV Rank', 'Value', self._option.iv_rank.value)
self.plot('IV Rank', 'Label', self._option.iv_rank.label)
# If IV Rank is low/moderate, we expect low/moderate volatility in the future.
# Sell ATM put contracts to collect premium. They should expire OTM since SPX has upward drift.
if self._option.iv_rank.label < 2 and (self._strategy != 'risk' or not self.portfolio.invested):
# Select the contracts with the furthest expiry in the chain.
expiry = max([c.expiry for c in chain if c.expiry])
chain = [c for c in chain if c.expiry == expiry]
# Select the put contracts.
chain = [c for c in chain if c.right == OptionRight.PUT]
# Select the contract with the lowest strike price. Lower strike => more likely to expire OTM.
strike = min([c.strike for c in chain])
contract = [c for c in chain if c.strike == strike][0]
# Rotate out of the safety strategy.
self.liquidate()
self._strategy = 'risk'
# Sell the contract.
self.set_holdings(contract.symbol, -0.5)
# If IV Rank is high, the future is expected to be volatile. Flight to saftey => hold gold.
elif self._option.iv_rank.label == 2 and (self._strategy != 'safety' or not self.portfolio.invested):
# Rotate out of the risk-on strategy.
self.liquidate()
# Drop contracts that have no mirror.
key = lambda c: (c.expiry, c.strike)
sorted_chain = sorted(chain, key=key)
contracts_with_mirror = []
for _, group in groupby(sorted_chain, key=key):
group_list = list(group) # Convert group iterator to list
if len(group_list) == 2: # Only keep groups with exactly 2 items
contracts_with_mirror.extend(group_list)
chain = contracts_with_mirror
expiries = [c.expiry for c in chain if c.expiry]
if not expiries:
return
expiry = max(expiries)
chain = [c for c in chain if c.expiry == expiry]
strike = min([c.strike for c in chain])
self._strategy = 'safety'
# Buy the straddle.
self.buy(OptionStrategies.straddle(self._option.symbol, strike, expiry), 10)
class IVRank:
def __init__(self, lookback=252, min_expiry=30):
self._min_iv = Minimum(lookback)
self._max_iv = Maximum(lookback)
self._min_expiry = timedelta(min_expiry)
self._history = RollingWindow[float](lookback)
def update(self, chain):
# Select contracts to use in the aggregation.
# 1) Contracts have the closest expiry after 1 month.
expiries = [c.id.date for c in chain if c.id.date >= chain.end_time + self._min_expiry]
if not expiries:
return
expiry = min([c.id.date for c in chain if c.id.date >= chain.end_time + self._min_expiry])
contracts = [c for c in chain if c.id.date == expiry]
# 2) ATM contracts.
abs_delta_by_symbol = {c.symbol: abs(c.underlying_last_price - c.id.strike_price) for c in contracts}
abs_delta = min(abs_delta_by_symbol.values())
contracts = [c for c in contracts if abs_delta_by_symbol[c.symbol] == abs_delta]
# Aggregate the IVs of the selected contracts.
agg_iv = float(np.median([c.implied_volatility for c in contracts]))
self._history.add(agg_iv)
# Calculate the IV Rank and determine if it's high, medium, or low.
self._min_iv.update(chain.end_time, agg_iv)
self.is_ready = self._max_iv.update(chain.end_time, agg_iv)
if self.is_ready:
self.value = float((agg_iv - self._min_iv.current.value) / (self._max_iv.current.value - self._min_iv.current.value))
# Cluster the trailing IV Rank values into high, medium, and low groups.
kmeans = KMeans(n_clusters=3, random_state=0).fit(np.array(list(self._history)[::-1]).reshape(-1, 1))
# Get the cluster labels.
labels = kmeans.labels_
# Update the labels so that 0=Low, 1=Medium, 2=High.
label_map = {original: sorted_ for sorted_, original in enumerate(np.argsort(kmeans.cluster_centers_.ravel()))}
labels = [label_map[label] for label in labels]
# Save the label of the current value.
self.label = labels[-1] # 0=Low, 1=Medium, 2=High
return self.is_ready