| Overall Statistics |
|
Total Trades 549 Average Win 2.93% Average Loss -1.35% Compounding Annual Return 42.073% Drawdown 23.100% Expectancy 1.174 Net Profit 9669.935% Sharpe Ratio 1.644 Probabilistic Sharpe Ratio 94.392% Loss Rate 31% Win Rate 69% Profit-Loss Ratio 2.17 Alpha 0.357 Beta 0.126 Annual Standard Deviation 0.225 Annual Variance 0.05 Information Ratio 0.979 Tracking Error 0.277 Treynor Ratio 2.94 Total Fees $8834.31 |
'''
Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.3
(with dynamic selector for fundamental factors and momentum)
inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang, Miko M, Leandro Maia
Leandro Maia setup modified by Vladimir
https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p2/comment-29437
'''
from QuantConnect.Data.UniverseSelection import *
import numpy as np
import pandas as pd
# --------------------------------------------------------------------------------------------------------
BONDS = ['TLT']; VOLA = 126; BASE_RET = 85; STK_MOM = 126; N_COARSE = 100; N_FACTOR = 20; N_MOM = 5; LEV = 1.00;
# --------------------------------------------------------------------------------------------------------
class Fundamental_Factors_Momentum_ROC_Comparison_OUT_DAY(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1)
self.SetEndDate(2021, 1, 13)
self.InitCash = 100000
self.SetCash(self.InitCash)
self.MKT = self.AddEquity("SPY", Resolution.Hour).Symbol
self.mkt = []
self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin)
res = Resolution.Hour
self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in BONDS]
self.INI_WAIT_DAYS = 15
self.wait_days = self.INI_WAIT_DAYS
self.GLD = self.AddEquity('GLD', res).Symbol
self.SLV = self.AddEquity('SLV', res).Symbol
self.XLU = self.AddEquity('XLU', res).Symbol
self.XLI = self.AddEquity('XLI', res).Symbol
self.UUP = self.AddEquity('UUP', res).Symbol
self.DBB = self.AddEquity('DBB', res).Symbol
self.pairs = [self.GLD, self.SLV, self.XLU, self.XLI, self.UUP, self.DBB]
self.bull = 1
self.bull_prior = 0
self.count = 0
self.outday = (-self.INI_WAIT_DAYS+1)
self.SetWarmUp(timedelta(350))
self.UniverseSettings.Resolution = res
self.AddUniverse(self.CoarseFilter, self.FineFilter)
self.data = {}
self.RebalanceFreq = 60
self.UpdateFineFilter = 0
self.symbols = None
self.RebalanceCount = 0
self.wt = {}
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30),
self.daily_check)
symbols = [self.MKT] + self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, VOLA, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-VOLA:]
def derive_vola_waitdays(self):
sigma = 0.6 * np.log1p(self.history[[self.MKT]].pct_change()).std() * np.sqrt(252)
wait_days = int(sigma * BASE_RET)
period = int((1.0 - sigma) * BASE_RET)
return wait_days, period
def CoarseFilter(self, coarse):
if not (((self.count-self.RebalanceCount) == self.RebalanceFreq) or (self.count == self.outday + self.wait_days - 1)):
self.UpdateFineFilter = 0
return Universe.Unchanged
self.UpdateFineFilter = 1
selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)]
filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in filtered[:N_COARSE]]
def FineFilter(self, fundamental):
if self.UpdateFineFilter == 0:
return Universe.Unchanged
filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0)
and (x.EarningReports.BasicAverageShares.ThreeMonths > 0)
and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9
and x.SecurityReference.IsPrimaryShare
and x.SecurityReference.SecurityType == "ST00000001"
and x.SecurityReference.IsDepositaryReceipt == 0
and x.CompanyReference.IsLimitedPartnership == 0]
top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:N_FACTOR]
self.symbols = [x.Symbol for x in top]
self.UpdateFineFilter = 0
self.RebalanceCount = self.count
return self.symbols
def OnSecuritiesChanged(self, changes):
addedSymbols = []
for security in changes.AddedSecurities:
addedSymbols.append(security.Symbol)
if security.Symbol not in self.data:
self.data[security.Symbol] = SymbolData(security.Symbol, STK_MOM, self)
if len(addedSymbols) > 0:
history = self.History(addedSymbols, 1 + STK_MOM, Resolution.Daily).loc[addedSymbols]
for symbol in addedSymbols:
try:
self.data[symbol].Warmup(history.loc[symbol])
except:
self.Debug(str(symbol))
continue
def daily_check(self):
self.wait_days, period = self.derive_vola_waitdays()
r = self.history.pct_change(period).iloc[-1]
bear = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if bear:
self.bull = False
self.outday = self.count
if (self.count >= self.outday + self.wait_days):
self.bull = True
self.wt_stk = LEV if self.bull else 0
self.wt_bnd = 0 if self.bull else LEV
if bear:
self.trade_out()
if (self.bull and not self.bull_prior) or (self.bull and (self.count==self.RebalanceCount)):
self.trade_in()
self.bull_prior = self.bull
self.count += 1
def trade_out(self):
for sec in self.BONDS:
self.wt[sec] = self.wt_bnd/len(self.BONDS)
for sec in self.Portfolio.Keys:
if sec not in self.BONDS:
self.wt[sec] = 0
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
for sec, weight in self.wt.items():
if weight != 0:
self.SetHoldings(sec, weight)
def trade_in(self):
if self.symbols is None: return
output = self.calc_return(self.symbols)
stocks = output.iloc[:N_MOM].index
for sec in self.Portfolio.Keys:
if sec not in stocks:
self.wt[sec] = 0
for sec in stocks:
self.wt[sec] = self.wt_stk/N_MOM
for sec, weight in self.wt.items():
self.SetHoldings(sec, weight)
def calc_return(self, stocks):
ret = {}
for symbol in stocks:
try:
ret[symbol] = self.data[symbol].Roc.Current.Value
except:
self.Debug(str(symbol))
continue
df_ret = pd.DataFrame.from_dict(ret, orient='index')
df_ret.columns = ['return']
sort_return = df_ret.sort_values(by = ['return'], ascending = False)
return sort_return
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0]
self.Plot('Strategy Equity', self.MKT, mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 2))
self.Plot('Holdings', 'Target Leverage', LEV)
class SymbolData(object):
def __init__(self, symbol, roc, algorithm):
self.Symbol = symbol
self.Roc = RateOfChange(roc)
self.algorithm = algorithm
self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily)
algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator)
def Warmup(self, history):
for index, row in history.iterrows():
self.Roc.Update(index, row['close'])