| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
from sklearn import linear_model
import numpy as np
import pandas as pd
from scipy import stats
from math import floor
from datetime import timedelta
class PairsTradingAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2015,6,1)
self.SetEndDate(2018,10,1)
self.SetCash(100000)
self.numdays = 1000 # set the length of training period
tickers = ["EURUSD","GBPUSD"]
self.symbols = []
self.threshold = 1.
for i in tickers:
self.symbols.append(self.AddSecurity(SecurityType.Forex, i, Resolution.Hour).Symbol)
for i in self.symbols:
i.hist_window = RollingWindow[TradeBar](self.numdays)
def OnData(self, data):
if not (data.ContainsKey("EURUSD") and data.ContainsKey("GBPUSD")): return
for symbol in self.symbols:
symbol.hist_window.Add(data[symbol])
price_x = pd.Series([float(i.Close) for i in self.symbols[0].hist_window],
index = [i.Time for i in self.symbols[0].hist_window])
price_y = pd.Series([float(i.Close) for i in self.symbols[1].hist_window],
index = [i.Time for i in self.symbols[1].hist_window])
if len(price_x) < 1000:
return
spread = self.regr(np.log(price_x), np.log(price_y))
mean = np.mean(spread)
std = np.std(spread)
ratio = floor(self.Portfolio[self.symbols[1]].Price / self.Portfolio[self.symbols[0]].Price)
quantity = float(self.CalculateOrderQuantity(self.symbols[0],0.1))
if spread[-1] > mean + self.threshold * std:
if not self.Portfolio[self.symbols[0]].Quantity > 0 and not self.Portfolio[self.symbols[0]].Quantity < 0 and quantity > 1:
self.Sell(self.symbols[1], quantity)
self.Buy(self.symbols[0], ratio * quantity)
elif spread[-1] < mean - self.threshold * std:
if not self.Portfolio[self.symbols[0]].Quantity < 0 and not self.Portfolio[self.symbols[0]].Quantity > 0 and quantity > 1:
self.Sell(self.symbols[0], quantity)
self.Buy(self.symbols[1], ratio * quantity)
else:
self.Liquidate()
def regr(self,x,y):
regr = linear_model.LinearRegression()
x_constant = np.column_stack([np.ones(len(x)), x])
regr.fit(x_constant, y)
beta = regr.coef_[0]
alpha = regr.intercept_
spread = y - x*beta - alpha
return spread