| Overall Statistics |
|
Total Trades 64 Average Win 0.02% Average Loss -0.04% Compounding Annual Return 5.045% Drawdown 4.000% Expectancy -0.123 Net Profit 0.826% Sharpe Ratio 0.414 Probabilistic Sharpe Ratio 39.499% Loss Rate 42% Win Rate 58% Profit-Loss Ratio 0.51 Alpha 0.063 Beta -0.057 Annual Standard Deviation 0.117 Annual Variance 0.014 Information Ratio -1.262 Tracking Error 0.158 Treynor Ratio -0.85 Total Fees $0.00 |
#self.SetUniverseSelection( ManualUniverseSelectionModel(symbl) )
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Risk import *
from QuantConnect.Algorithm.Framework.Alphas import *
from QuantConnect.Orders.Fees import ConstantFeeModel
from QuantConnect.Algorithm.Framework.Selection import *
from QuantConnect.Algorithm.Framework.Execution import *
from QuantConnect.Algorithm.Framework.Portfolio import *
import numpy as np
import math
class PriceGapMeanReversionAlpha(QCAlgorithm):
'''The motivating idea for this Alpha Model is that a large price gap (here we use true outliers --
price gaps that whose absolutely values are greater than 3 * Volatility) is due to rebound
back to an appropriate price or at least retreat from its brief extreme. Using a Coarse Universe selection
function, the algorithm selects the top x-companies by Dollar Volume (x can be any number you choose)
to trade with, and then uses the Standard Deviation of the 100 most-recent closing prices to determine
which price movements are outliers that warrant emitting insights.
This alpha is part of the Benchmark Alpha Series created by QuantConnect which are open
sourced so the community and client funds can see an example of an alpha.'''
def Initialize(self):
self.SetStartDate(2019, 8, 31) # Set Start Date
self.SetEndDate(2019, 10, 30) # Set Start Date
self.SetCash(100000) #Set Strategy Cash
#self.SetWarmup(15)
stockPlot = Chart("Supertrend Plot")
# On the Trade Plotter Chart we want 3 series: trades and price:
stockPlot.AddSeries(Series("Open", SeriesType.Line, 0))
stockPlot.AddSeries(Series("High", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Low", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Close", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Ha Close", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Ha Open", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Ha High", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Ha Low", SeriesType.Line, 0))
stockPlot.AddSeries(Series("Hahl2", SeriesType.Line, 0))
stockPlot.AddSeries(Series("TmpUp", SeriesType.Line, 0))
stockPlot.AddSeries(Series("TmpDn", SeriesType.Line, 0))
stockPlot.AddSeries(Series("FinalUp", SeriesType.Line, 0))
stockPlot.AddSeries(Series("FinalDn", SeriesType.Line, 0))
stockPlot.AddSeries(Series("ATR", SeriesType.Line, 0))
stockPlot.AddSeries(Series("TrendDir", SeriesType.Line, 0))
self.AddChart(stockPlot)
## Initialize variables to be used in controlling frequency of universe selection
self.week = -1
symbl = [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in ['IBM','AAPL']]
#symbl = self.AddEquity("IBM", Resolution.Daily) ## Subscribe to hourly TradeBars
## Manual Universe Selection
self.UniverseSettings.Resolution = Resolution.Daily
#self.SetUniverseSelection( ManualUniverseSelectionModel(symbl) )
self.AddUniverseSelection(FineFundamentalUniverseSelectionModel(self.SelectCoarse, self.SelectFine))
## Set trading fees to $0
self.SetSecurityInitializer(lambda security: security.SetFeeModel(ConstantFeeModel(0)))
## Set custom Alpha Model
self.SetAlpha(PriceGapMeanReversionAlphaModel())
## Set equal-weighting Portfolio Construction Model
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
## Set Execution Model
self.SetExecution(ImmediateExecutionModel())
## Set Risk Management Model
self.SetRiskManagement(NullRiskManagementModel())
def SelectCoarse(self, coarse):
tickers = ["AAPL", "AIG", "IBM"]
return [Symbol.Create(x, SecurityType.Equity, Market.USA) for x in tickers]
def SelectFine(self, fine):
return [f.Symbol for f in fine]
class PriceGapMeanReversionAlphaModel:
def __init__(self, *args, **kwargs):
''' Initialize variables and dictionary for Symbol Data to support algorithm's function '''
self.lookback = 15
self.window = RollingWindow[float](10)
self.trendWindow = RollingWindow[int](10)
self.ST_Period = 15
self.ST_Coeff = 1
self.Name = 'TosAlphaModel'
self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily
self.prediction_interval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), 5) ## Arbitrary
self.symbolDataBySymbol = {}
self.symbolArr = []
self.symbolName = ''
def Update(self, algorithm, data):
insights = []
#algorithm.Log(self.symbolDataBySymbol.items())
## Loop through all Symbol Data objects
for symbol, symbolData in self.symbolDataBySymbol.items():
## Evaluate whether or not the price jump is expected to rebound
if not symbolData.IsTrend(data):
continue
## Emit insights accordingly to the price jump sign
#direction = flat
direction = InsightDirection.Down if symbolData.trendDir1 > 0 else InsightDirection.Up
insights.append(Insight.Price(symbol, self.prediction_interval, direction, None))
#algorithm.Log(" Symbol:" + str(symbol) + " Open:" + str(data.Bars[symbol].Open))
algorithm.Plot("Supertrend Plot", "Open", str(symbolData.o))
algorithm.Plot("Supertrend Plot", "High", str(symbolData.h))
algorithm.Plot("Supertrend Plot", "Low", str(symbolData.l))
algorithm.Plot("Supertrend Plot", "Close", str(symbolData.c))
algorithm.Plot("Supertrend Plot", "Ha Close", str(symbolData.ha_close))
algorithm.Plot("Supertrend Plot", "Ha Open", str(symbolData.ha_open))
algorithm.Plot("Supertrend Plot", "Ha High", str(symbolData.ha_high))
algorithm.Plot("Supertrend Plot", "Ha Low", str(symbolData.ha_low))
algorithm.Plot("Supertrend Plot", "Hahl2", str(symbolData.hahl2_1))
algorithm.Plot("Supertrend Plot", "TmpUp", str(symbolData.tmpUp1))
algorithm.Plot("Supertrend Plot", "TmpDn", str(symbolData.tmpDn1))
algorithm.Plot("Supertrend Plot", "FinalUp", str(symbolData.finalUp1))
algorithm.Plot("Supertrend Plot", "FinalDn", str(symbolData.finalDn1))
algorithm.Plot("Supertrend Plot", "ATR", str(symbolData.atr))
algorithm.Plot("Supertrend Plot", "TrendDir", str(symbolData.trendDir1))
return insights
def OnSecuritiesChanged(self, algorithm, changes):
# Clean up data for removed securities
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
if symbolData is not None:
symbolData.RemoveConsolidators(algorithm)
symbols = [x.Symbol for x in changes.AddedSecurities
if x.Symbol not in self.symbolDataBySymbol]
history = algorithm.History(symbols, self.lookback, self.resolution)
if history.empty: return
## Create and initialize SymbolData objects
for symbol in symbols:
symbolData = SymbolData(algorithm, symbol, self.lookback, self.resolution, 'TOS', self.ST_Period,self.ST_Coeff,self.window,self.trendWindow)
symbolData.WarmUpIndicators(history.loc[symbol])
self.symbolDataBySymbol[symbol] = symbolData
class SymbolData:
def __init__(self, algorithm, symbol, lookback, resolution,name, period, coeff, window, trendWindow):
self.symbol = symbol
self.close = 0
self.PriceJump = 0
self.Name = name
self.IsReady = False
self.o = self.h = self.l = self.c = self.ha_close = self.ha_open = self.ha_high = 0
self.pre_close = 0
self.pre_ha_close = 0
self.ha_low = self.hahl2_1 = self.trendDir1 = 0
self.trendDir = trendWindow
self.last_price = window
self._open = window
self._close = window
self.tmpUp = self.tmpDn = self.finalUp = self.finalDn = window
self.tmpUp1 = self.tmpDn1 = self.finalUp1 = self.finalDn1 = 0
self.super_trend = 0
self.atr = AverageTrueRange(period, MovingAverageType.Wilders)
self.coeff = coeff
self.consolidator = algorithm.ResolveConsolidator(symbol, resolution)
self.volatility = StandardDeviation(f'{symbol}.STD({lookback})', lookback)
algorithm.RegisterIndicator(symbol, self.volatility, self.consolidator)
def RemoveConsolidators(self, algorithm):
algorithm.SubscriptionManager.RemoveConsolidator(self.symbol, self.consolidator)
def WarmUpIndicators(self, history):
self.close = history.iloc[-1].close
for tuple in history.itertuples():
self.volatility.Update(tuple.Index, tuple.close)
def IsTrend(self, data):
## Check for any data events that would return a NoneBar in the Alpha Model Update() method
if not data.Bars.ContainsKey(self.symbol):
return False
self.atr.Update(data.Bars[self.symbol])
if self.atr.IsReady:
self.o = data.Bars[self.symbol].Open ## Open price
self.h = data.Bars[self.symbol].High ## High price
self.l = data.Bars[self.symbol].Low ## Low price
self.c = last_price = data.Bars[self.symbol].Close ## Close price
self.last_price.Add(last_price)
#check last_price is ready or not
if not self.last_price.IsReady:
self.pre_close = 0
else:
self.pre_close = self.last_price[1]
_close = (self.o + self.h + self.l + self.c) / 4.0
self._close.Add(_close)
#check _close is ready or not
if not self._close.IsReady:
self.IsReady = False
return
else:
self.ha_close = self._close[1]
#self.pre_ha_close = self._close[0]
_open = (self.o + self.c) / 2.0
self._open.Add(_open)
#check _close is ready or not
if not self._open.IsReady:
self.ha_open = (self._open[0] + self._close[0]) / 2.0
else:
self.ha_open = (self._open[1] + self._close[1]) / 2.0
self.ha_high = Math.Max(self.o, Math.Max(self.ha_open, self.ha_close))
self.ha_low = Math.Min(self.l, Math.Min(self.ha_open, self.ha_close))
self.hahl2_1 = (self.ha_high + self.ha_low) / 2
tmpUp = self.hahl2_1 - (self.atr.Current.Value * self.coeff)
self.tmpUp.Add(tmpUp)
self.tmpUp1 = self.tmpUp[0]
tmpDn = self.hahl2_1 + (self.atr.Current.Value * self.coeff)
self.tmpDn.Add(tmpDn)
self.tmpDn1 = self.tmpDn[0]
# register final up and final down in rolling window
self.finalUp.Add(tmpUp)
self.finalUp1 = self.finalUp[0]
self.finalDn.Add(tmpDn)
self.finalDn1 = self.finalDn[0]
if self.pre_close > self.finalUp[1]:
self.finalUp[0] = max(self.tmpUp[0], self.finalUp[1])
else:
self.finalUp[0] = self.tmpUp[0]
if self.pre_close < self.finalDn[1]:
self.finalDn[0] = min(self.tmpDn[0], self.finalDn[1])
else:
self.finalDn[0] = self.tmpDn[0]
# calculate trendDir
if data.Bars[self.symbol].Close > self.finalDn[1]:
trendDir = 1
elif data.Bars[self.symbol].Close < self.finalUp[1]:
trendDir = -1
# adding trendDir in rolling window
self.trendDir.Add(trendDir)
if not self.trendDir.IsReady:
self.IsReady = False
return
else:
self.trendDir1 = self.trendDir[0]
if not math.isnan(self.trendDir1):
self.trendDir[0] = self.trendDir1
else:
self.trendDir[0] = 1
self.trendDir1 = self.trendDir[0]
return self.trendDir1