| Overall Statistics |
|
Total Trades 72 Average Win 0.13% Average Loss -0.05% Compounding Annual Return 114.145% Drawdown 1.100% Expectancy 1.198 Net Profit 2.250% Sharpe Ratio 12.806 Probabilistic Sharpe Ratio 93.637% Loss Rate 36% Win Rate 64% Profit-Loss Ratio 2.44 Alpha 0.765 Beta 0.119 Annual Standard Deviation 0.078 Annual Variance 0.006 Information Ratio -8.02 Tracking Error 0.115 Treynor Ratio 8.329 Total Fees $0.00 |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Data import *
from datetime import timedelta
import pandas as pd
from io import StringIO
import datetime
class main(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020,7,27) # Set Start Date
self.SetEndDate(2020,12,31)# Set End Date
self.SetCash(100000) # Set Strategy Cash
# If using dropbox remember to add the &dl=1 to trigger a download
csv = self.Download("https://www.dropbox.com/s/2hlxb85lo7y10i3/test.csv?dl=1")
# read file (which needs to be a csv) to a pandas DataFrame. include following imports above
self.df = pd.read_csv(StringIO(csv))
self.SetExecution(ImmediateExecutionModel())
self.AveragePrice = None
for i in range(len(self.df)) :
self.security=str(self.df.iloc[i,0]).replace(" ", "")
#self.quantity=self.df.iloc[i,1]
self.AddEquity(self.security,Resolution.Minute).SetDataNormalizationMode(DataNormalizationMode.Raw)
############## SLIPPAGE & FEE MODEL####################################################################
self.Securities[self.security].FeeModel = ConstantFeeModel(0)
self.Securities[self.security].SlippageModel = ConstantSlippageModel(0)
def OnData(self, slice):
for i in range(len(self.df)):
if slice.Time.hour==self.df.iloc[i,4] and slice.Time.minute==self.df.iloc[i,5]:
self.MarketOrder(str(self.df.iloc[i,0]).replace(" ", ""),self.df.iloc[i,1])
self.df.iloc[i, 8] = self.Portfolio[str(self.df.iloc[i,0]).replace(" ", "")].AveragePrice
for i in range(len(self.df)):
if not slice.Bars.ContainsKey(str(self.df.iloc[i,0]).replace(" ", "")): return
if self.df.iloc[i,8] != None :
if (slice[str(self.df.iloc[i,0]).replace(" ", "")].Price > self.df.iloc[i,8] * self.df.iloc[i,3]):
self.Liquidate(str(self.df.iloc[i,0]).replace(" ", "")," TAKE PROFIT @ " + str(slice[str(self.df.iloc[i,0]).replace(" ", "")].Price) +" AverageFillPrice " +str(self.df.iloc[i,8]))
if (slice[str(self.df.iloc[i,0]).replace(" ", "")].Price < self.df.iloc[i,8] * self.df.iloc[i,2]):
self.Liquidate(str(self.df.iloc[i,0]).replace(" ", "")," STOP LOSS @ " + str(slice[str(self.df.iloc[i,0]).replace(" ", "")].Price) +" AverageFillPrice " +str(self.df.iloc[i,8]))
for i in range(len(self.df)):
if slice.Time.hour==self.df.iloc[i,6] and slice.Time.minute==self.df.iloc[i,7]:
self.Liquidate(str(self.df.iloc[i,0]).replace(" ", ""))