| Overall Statistics |
|
Total Trades 6 Average Win 56.93% Average Loss -8.09% Compounding Annual Return 3.574% Drawdown 59.400% Expectancy 1.678 Net Profit 32.444% Sharpe Ratio 0.254 Loss Rate 67% Win Rate 33% Profit-Loss Ratio 7.03 Alpha 0.08 Beta 0.039 Annual Standard Deviation 0.333 Annual Variance 0.111 Information Ratio -0.056 Tracking Error 0.365 Treynor Ratio 2.165 Total Fees $132.59 |
using System;
using System.Linq;
using QuantConnect.Indicators;
using QuantConnect.Models;
using QuantConnect.Data.Consolidators;
namespace QuantConnect.Algorithm.Examples
{
/// <summary>
///
/// QuantConnect University: EMA + SMA Cross
///
/// In this example we look at the canonical 15/30 day moving average cross. This algorithm
/// will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses
/// back below the 30.
/// </summary>
public class QCUMovingAverageCross : QCAlgorithm
{
private const string Symbol = "JNUG";
private ExponentialMovingAverage fast;
private SimpleMovingAverage slow;
private SimpleMovingAverage[] ribbon;
public override void Initialize()
{
// set up our analysis span
SetStartDate(2009, 01, 01);
SetEndDate(2017, 01, 01);
// request SPY data with minute resolution
AddSecurity(SecurityType.Equity, Symbol, Resolution.Hour);
// create a 89 day exponential moving average
fast = EMA(Symbol, 89, Resolution.Daily);
// create a 100 day exponential moving average
slow = SMA(Symbol, 140, Resolution.Daily);
// the following lines produce a simple moving average ribbon, this isn't
// actually used in the algorithm's logic, but shows how easy it is to make
// indicators and plot them!
// note how we can easily define these indicators to receive hourly data
int ribbonCount = 7;
int ribbonInterval = 15*8;
ribbon = new SimpleMovingAverage[ribbonCount];
for(int i = 0; i < ribbonCount; i++)
{
ribbon[i] = SMA(Symbol, (i + 1)*ribbonInterval, Resolution.Hour);
}
}
private DateTime previous;
public void OnData(TradeBars data)
{
// a couple things to notice in this method:
// 1. We never need to 'update' our indicators with the data, the engine takes care of this for us
// 2. We can use indicators directly in math expressions
// 3. We can easily plot many indicators at the same time
// wait for our slow ema to fully initialize
if (!slow.IsReady) return;
// only once per day
if (previous.Date == data.Time.Date) return;
// define a small tolerance on our checks to avoid bouncing
const decimal tolerance = 0.00015m;
var holdings = Portfolio[Symbol].Quantity;
//////////////////////////
// we only want to go short if we're currently short or flat
if (holdings == 0 )
{
// if the slow is greater than the fast, we'll go long
if (fast > slow * (1 + tolerance))
{
Log("BUY >> " + Securities[Symbol].Price);
SetHoldings(Symbol, 0.5);
}
}
// we only want to liquidate if we're currently short
// if the fast is less than the slow we'll liquidate our long
if (holdings > 0 && fast <= slow)
{
Log("SELL >> " + Securities[Symbol].Price);
Liquidate(Symbol);
}
Plot(Symbol, "Price", data[Symbol].Price);
Plot("Ribbon", "Price", data[Symbol].Price);
// easily plot indicators, the series name will be the name of the indicator
Plot(Symbol, fast, slow);
Plot("Ribbon", ribbon);
previous = data.Time;
}
}
}