| Overall Statistics |
|
Total Trades 120 Average Win 1.86% Average Loss -0.53% Compounding Annual Return -12.883% Drawdown 19.900% Expectancy -0.368 Net Profit -12.355% Sharpe Ratio -1.004 Loss Rate 86% Win Rate 14% Profit-Loss Ratio 3.49 Alpha 0.128 Beta -12.908 Annual Standard Deviation 0.129 Annual Variance 0.017 Information Ratio -1.159 Tracking Error 0.129 Treynor Ratio 0.01 Total Fees $190.58 |
from Alphas.RsiAlphaModel import RsiAlphaModel
from Execution.ImmediateExecutionModel import ImmediateExecutionModel
from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel
from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity
from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel
from System.Drawing import Color
from enum import Enum
class MyAlgorithm(QCAlgorithm):
def Initialize(self):
self.symbol = "SPY"
self.res2use = Resolution.Daily
self.SetStartDate(2018, 6, 17) # Set Start Date
self.SetCash(100000) # Set Strategy Cash
# request the daily equity data
self.AddEquity(self.symbol, self.res2use)
self.AddPlots(self.symbol, self.res2use)
# Six module plug and play algorithm development model
self.AddAlpha(RsiAlphaModel(14, self.res2use))
self.SetExecution(ImmediateExecutionModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel())
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.01))
# self.SetUniverseSelection(QC500UniverseSelectionModel())
symbols = [ Symbol.Create(self.symbol, SecurityType.Equity, Market.USA) ]
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
# Create new chart and series
plotExample = Chart("Portfolio and Triggers")
plotExample.AddSeries(Series("Portfolio Value", SeriesType.Line, '$', Color.Green))
plotExample.AddSeries(Series('Buy', SeriesType.Scatter, '$', Color.Red, ScatterMarkerSymbol.Triangle))
plotExample.AddSeries(Series('Sell', SeriesType.Scatter, '$', Color.Blue, ScatterMarkerSymbol.TriangleDown))
self.AddChart(plotExample)
def OnData(self, data):
'''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
Arguments:
data: Slice object keyed by symbol containing the stock data
'''
if not self.Portfolio.Invested:
self.SetHoldings(self.symbol, 1.0)
def AddPlots(self, symbol, res2use):
# Calcualte and plot various technical indicators
self.sym_price = self.Identity(symbol)
# Process: 1. Create Indictor
# 2. Register the daily data of "SPY" to automatically update the indicator
# 3. Plot indicator
# SMA - Simple moving average
self.sma50 = self.SMA(symbol, 50, res2use)
self.sma200 = self.SMA(symbol, 200, res2use)
self.RegisterIndicator(symbol, self.sma50)
self.RegisterIndicator(symbol, self.sma200)
self.PlotIndicator("SMA50-SMA200", self.sym_price, self.sma50, self.sma200)
# BB - Bolling Bands
self.bb = self.BB(symbol, 200, res2use)
self.RegisterIndicator(symbol, self.bb)
self.PlotIndicator("BB", self.sym_price, self.bb.UpperBand, self.bb.LowerBand)
# RSI - Relative Strength Index
self.rsi = self.RSI(symbol, 10, MovingAverageType.Simple, res2use)
self.RegisterIndicator(symbol, self.rsi)
self.PlotIndicator("RSI", self.rsi)
class RsiAlphaModel(AlphaModel):
'''Uses Wilder's RSI to create insights.
Using default settings, a cross over below 30 or above 70 will trigger a new insight.'''
def __init__(self,
period = 14,
resolution = Resolution.Daily):
'''Initializes a new instance of the RsiAlphaModel class
Args:
period: The RSI indicator period'''
self.period = period
self.resolution = resolution
self.insightPeriod = Time.Multiply(Extensions.ToTimeSpan(resolution), period)
self.symbolDataBySymbol ={}
resolutionString = Extensions.GetEnumString(resolution, Resolution)
self.Name = '{}({},{})'.format(self.__class__.__name__, period, resolutionString)
def Update(self, algorithm, data):
'''Updates this alpha model with the latest data from the algorithm.
This is called each time the algorithm receives data for subscribed securities
Args:
algorithm: The algorithm instance
data: The new data available
Returns:
The new insights generated'''
insights = []
for symbol, symbolData in self.symbolDataBySymbol.items():
rsi = symbolData.RSI
previous_state = symbolData.State
state = self.GetState(rsi, previous_state)
if state != previous_state and rsi.IsReady:
if state == State.TrippedLow:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Up))
if state == State.TrippedHigh:
insights.append(Insight.Price(symbol, self.insightPeriod, InsightDirection.Down))
symbolData.State = state
algorithm.Plot("Portfolio and Triggers", "Portfolio Value", algorithm.Portfolio.TotalPortfolioValue)
for insight in insights:
if insight.Direction > 0:
algorithm.Plot("Portfolio and Triggers", "Buy", algorithm.Portfolio.TotalPortfolioValue)
else:
algorithm.Plot("Portfolio and Triggers", "Sell", algorithm.Portfolio.TotalPortfolioValue)
return insights
def OnSecuritiesChanged(self, algorithm, changes):
'''Cleans out old security data and initializes the RSI for any newly added securities.
Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
symbols = [ x.Symbol for x in changes.RemovedSecurities ]
if len(symbols) > 0:
for subscription in algorithm.SubscriptionManager.Subscriptions:
if subscription.Symbol in symbols:
self.symbolDataBySymbol.pop(subscription.Symbol, None)
subscription.Consolidators.Clear()
# initialize data for added securities
addedSymbols = [ x.Symbol for x in changes.AddedSecurities if x.Symbol not in self.symbolDataBySymbol]
if len(addedSymbols) == 0: return
history = algorithm.History(addedSymbols, self.period, self.resolution)
for symbol in addedSymbols:
rsi = algorithm.RSI(symbol, self.period, MovingAverageType.Wilders, self.resolution)
if not history.empty:
ticker = SymbolCache.GetTicker(symbol)
if ticker not in history.index.levels[0]:
Log.Trace(f'RsiAlphaModel.OnSecuritiesChanged: {ticker} not found in history data frame.')
continue
for tuple in history.loc[ticker].itertuples():
rsi.Update(tuple.Index, tuple.close)
self.symbolDataBySymbol[symbol] = SymbolData(symbol, rsi)
def GetState(self, rsi, previous):
''' Determines the new state. This is basically cross-over detection logic that
includes considerations for bouncing using the configured bounce tolerance.'''
if rsi.Current.Value > 70:
return State.TrippedHigh
if rsi.Current.Value < 30:
return State.TrippedLow
if previous == State.TrippedLow:
if rsi.Current.Value > 35:
return State.Middle
if previous == State.TrippedHigh:
if rsi.Current.Value < 65:
return State.Middle
return previous
class SymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, rsi):
self.Symbol = symbol
self.RSI = rsi
self.State = State.Middle
class State(Enum):
'''Defines the state. This is used to prevent signal spamming and aid in bounce detection.'''
TrippedLow = 0
Middle = 1
TrippedHigh = 2