| Overall Statistics |
|
Total Orders 439 Average Win 2.27% Average Loss -1.37% Compounding Annual Return 39.317% Drawdown 28.600% Expectancy 0.608 Start Equity 10000 End Equity 53298.49 Net Profit 432.985% Sharpe Ratio 1.043 Sortino Ratio 1.235 Probabilistic Sharpe Ratio 48.083% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.66 Alpha 0.197 Beta 0.957 Annual Standard Deviation 0.273 Annual Variance 0.074 Information Ratio 0.888 Tracking Error 0.217 Treynor Ratio 0.298 Total Fees $475.50 Estimated Strategy Capacity $150000000.00 Lowest Capacity Asset ISRG RVIFYB6Z92LH Portfolio Turnover 5.38% |
#region imports
from AlgorithmImports import *
import numpy as np
from collections import deque
import statsmodels.api as sm
import statistics as stat
import pickle
#endregion
class Q2PlaygroundAlgorithm(QCAlgorithm):
def initialize(self):
# worst performance date range: (2015, 6, 1) to (2020, 3, 1)
######## Start Date ########
# self.set_start_date(2009, 3, 1) # Set Start Date
# self.set_start_date(2015, 6, 1) # Set Start Date
self.set_start_date(2019, 3, 1) # Set Start Date
# self.set_start_date(2020, 3, 1) # Set Start Date
# self.set_start_date(2021, 3, 1) # Set Start Date
# self.set_start_date(2022, 4, 1) # Set End Date
######## End Date ########
# self.set_end_date(2020, 3, 1) # Set Start Date
# self.set_end_date(2022, 11, 1) # Set End Date
self.set_end_date(2024, 6, 1) # Set End Date
self.set_cash(10000) # Set Strategy Cash
self.set_security_initializer(BrokerageModelSecurityInitializer(
self.BrokerageModel, FuncSecuritySeeder(self.GetLastKnownPrices)
))
########################## PARAMETERS ##########################
# self.p_lookback = self.get_parameter("p_lookback", 252)
# self.p_num_coarse = self.get_parameter("p_num_coarse", 200)
# self.p_num_fine = self.get_parameter("p_num_fine", 70)
# self.p_num_long = self.get_parameter("p_num_long", 5)
# self.p_adjustment_step = self.get_parameter("p_adjustment_step", 1.0)
# self.p_n_portfolios = self.get_parameter("p_n_portfolios", 1000)
# self.p_short_lookback = self.get_parameter("p_short_lookback", 63)
# self.p_rand_seed = self.get_parameter("p_rand_seed", 13)
################################################################
self.p_lookback = 63
self.p_num_coarse = 200
self.p_num_fine = 70
self.p_num_long = 5
self.p_adjustment_step = 1.0
self.p_n_portfolios = 1000
self.p_short_lookback = 42
self.p_rand_seed = 13
self.p_adjustment_frequency = 'monthly' # Can be 'monthly', 'weekly', 'bi-weekly'
################################################################
self.universe_settings.resolution = Resolution.DAILY
self._momp = {} # Dict of Momentum indicator keyed by Symbol
self._lookback = self.p_lookback # Momentum indicator lookback period
self._num_coarse = self.p_num_coarse # Number of symbols selected at Coarse Selection
self._num_fine = self.p_num_fine # Number of symbols selected at Fine Selection
self._num_long = self.p_num_long # Number of symbols with open positions
self._rebalance = False
self.current_holdings = set() # To track current holdings
self.target_weights = {} # To store target weights
self.adjustment_step = self.p_adjustment_step # Adjustment step for gradual transition
self.first_trade_date = None
self.next_adjustment_date = None
self.add_universe(self._coarse_selection_function, self._fine_selection_function)
def _coarse_selection_function(self, coarse):
'''Drop securities which have no fundamental data or have too low prices.
Select those with highest by dollar volume'''
if self.next_adjustment_date and self.time < self.next_adjustment_date:
return Universe.UNCHANGED
self._rebalance = True
if not self.first_trade_date:
self.first_trade_date = self.time
self.next_adjustment_date = self.get_next_adjustment_date(self.time)
self._rebalance = True
selected = sorted([x for x in coarse if x.has_fundamental_data and x.price > 5],
key=lambda x: x.dollar_volume, reverse=True)
return [x.symbol for x in selected[:self._num_coarse]]
def _fine_selection_function(self, fine):
'''Select security with highest market cap'''
selected = sorted(fine, key=lambda f: f.market_cap, reverse=True)
return [x.symbol for x in selected[:self._num_fine]]
def on_data(self, data):
# Update the indicator
for symbol, mom in self._momp.items():
mom.update(self.time, self.securities[symbol].close)
# Check if empty portfolio and set first_trade_date
if not self.Portfolio.Invested and not self.first_trade_date:
self.first_trade_date = self.time
self.next_adjustment_date = self.get_next_adjustment_date(self.time, initial=True)
self._rebalance = True
if not self._rebalance:
return
# Selects the securities with highest momentum
sorted_mom = sorted([k for k,v in self._momp.items() if v.is_ready],
key=lambda x: self._momp[x].current.value, reverse=True)
selected = sorted_mom[:self._num_long]
new_holdings = set(selected)
# Only rebalance if the new selection is different from current holdings
if new_holdings != self.current_holdings or self.first_trade_date == self.time:
if len(selected) > 0:
optimal_weights = self.optimize_portfolio(selected)
self.target_weights = dict(zip(selected, optimal_weights))
self.current_holdings = new_holdings
self.adjust_portfolio()
self._rebalance = False
self.next_adjustment_date = self.get_next_adjustment_date(self.time)
def on_securities_changed(self, changes):
# Clean up data for removed securities and Liquidate
for security in changes.RemovedSecurities:
symbol = security.Symbol
if self._momp.pop(symbol, None) is not None:
self.Liquidate(symbol, 'Removed from universe')
for security in changes.AddedSecurities:
if security.Symbol not in self._momp:
self._momp[security.Symbol] = MomentumPercent(self._lookback)
# Warm up the indicator with history price if it is not ready
added_symbols = [k for k, v in self._momp.items() if not v.IsReady]
history = self.History(added_symbols, 1 + self._lookback, Resolution.Daily)
history = history.close.unstack(level=0)
for symbol in added_symbols:
ticker = symbol.ID.ToString()
if ticker in history:
for time, value in history[ticker].dropna().items():
item = IndicatorDataPoint(symbol, time.date(), value)
self._momp[symbol].Update(item)
def optimize_portfolio(self, selected_symbols):
short_lookback = self.p_short_lookback
returns = self.history(selected_symbols, short_lookback, Resolution.DAILY)['close'].unstack(level=0).pct_change().dropna()
n_assets = len(selected_symbols)
n_portfolios = self.p_n_portfolios
results = np.zeros((3, n_portfolios))
weights_record = []
np.random.seed(self.p_rand_seed)
for i in range(n_portfolios):
weights = np.random.random(n_assets)
weights /= np.sum(weights)
portfolio_return = np.sum(returns.mean() * weights) * short_lookback
portfolio_stddev = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * short_lookback, weights)))
downside_stddev = np.sqrt(np.mean(np.minimum(0, returns).apply(lambda x: x**2, axis=0).dot(weights)))
sortino_ratio = portfolio_return / downside_stddev
results[0,i] = portfolio_return
results[1,i] = portfolio_stddev
results[2,i] = sortino_ratio
weights_record.append(weights)
best_sortino_idx = np.argmax(results[2])
return weights_record[best_sortino_idx]
def adjust_portfolio(self):
current_symbols = set(self.Portfolio.Keys)
target_symbols = set(self.target_weights.keys())
# Liquidate removed symbols
removed_symbols = current_symbols - target_symbols
for symbol in removed_symbols:
self.Liquidate(symbol)
# Adjust holdings for selected symbols
for symbol, target_weight in self.target_weights.items():
current_weight = self.Portfolio[symbol].Quantity / self.Portfolio.TotalPortfolioValue if symbol in self.Portfolio else 0
adjusted_weight = current_weight * (1 - self.adjustment_step) + target_weight * self.adjustment_step
self.SetHoldings(symbol, adjusted_weight)
def get_next_adjustment_date(self, current_date, initial=False):
if self.p_adjustment_frequency == 'weekly':
return current_date + timedelta(days=7)
elif self.p_adjustment_frequency == 'bi-weekly':
return current_date + timedelta(days=14)
elif self.p_adjustment_frequency == 'monthly':
if initial:
next_month = current_date.replace(day=1) + timedelta(days=32)
return next_month.replace(day=1)
next_month = current_date.replace(day=1) + timedelta(days=32)
return next_month.replace(day=1)
else:
raise ValueError(f"Unsupported adjustment frequency: {self.p_adjustment_frequency}")