| Overall Statistics |
|
Total Orders 2130 Average Win 0.03% Average Loss -0.02% Compounding Annual Return 19.505% Drawdown 12.100% Expectancy 0.382 Start Equity 1000000 End Equity 1193880.51 Net Profit 19.388% Sharpe Ratio 0.733 Sortino Ratio 1.04 Probabilistic Sharpe Ratio 54.527% Loss Rate 42% Win Rate 58% Profit-Loss Ratio 1.40 Alpha -0.045 Beta 1.01 Annual Standard Deviation 0.119 Annual Variance 0.014 Information Ratio -0.94 Tracking Error 0.046 Treynor Ratio 0.086 Total Fees $2174.25 Estimated Strategy Capacity $25000000.00 Lowest Capacity Asset BYA R735QTJ8XC9X Portfolio Turnover 2.26% Drawdown Recovery 139 |
from AlgorithmImports import *
class SP500FundamentalsGrowthStrategy(QCAlgorithm):
"""
S&P 500 Growth Strategy - Fundamentals Only Version
Growth Score (Higher = Better):
- YoY Revenue Growth: 70% weight
- ROE: 30% weight (quality growth proxy)
Portfolio: Top 200 Growth stocks with tier weighting
"""
def initialize(self):
self.set_start_date(2023, 1, 1)
self.set_end_date(2023, 12, 31)
self.set_cash(1000000)
self.set_benchmark("SPY")
# S&P 500 universe via SPY ETF constituents
self.spy_symbol = self.add_equity("SPY", Resolution.DAILY).symbol
self.add_universe(self.universe.etf(self.spy_symbol, self.universe_settings))
# Strategy parameters
self.rebalance_frequency = timedelta(days=7) # Weekly rebalancing (more practical)
# Data tracking
self.universe_symbols = []
self.last_rebalance = datetime.min
# Schedule weekly rebalancing
self.schedule.on(
self.date_rules.week_start("SPY"),
self.time_rules.at(10, 0),
self.rebalance_strategy
)
self.debug("S&P 500 Fundamentals Growth-Only strategy initialized")
def on_securities_changed(self, changes):
"""Handle universe changes - no indicators to create"""
# Remove old securities
for removed in changes.removed_securities:
symbol = removed.symbol
if symbol in self.universe_symbols:
self.universe_symbols.remove(symbol)
# Add new securities
for added in changes.added_securities:
symbol = added.symbol
if symbol != self.spy_symbol:
self.universe_symbols.append(symbol)
self.debug(f"Universe updated: {len(self.universe_symbols)} stocks")
def rebalance_strategy(self):
"""Main rebalancing logic using only fundamentals"""
if (self.time - self.last_rebalance) < self.rebalance_frequency:
return
self.debug(f"Rebalancing at {self.time}")
# Calculate scores for all stocks
growth_scores = {}
processed_count = 0
for symbol in self.universe_symbols:
try:
fund = self.securities[symbol].fundamentals
if fund.has_fundamental_data:
processed_count += 1
# Calculate growth score
growth_score = self.calculate_growth_score_fundamental(fund)
if growth_score is not None:
growth_scores[symbol] = growth_score
except Exception:
continue
self.debug(f"Processed {processed_count} stocks with fundamentals")
self.debug(f"Valid growth scores: {len(growth_scores)}")
if len(growth_scores) < 50:
self.debug("Insufficient data for rebalancing")
return
# Rank stocks (higher score = better)
growth_rankings = self.rank_stocks(growth_scores, ascending=False)
# Select top 200 growth stocks
top_200_growth = growth_rankings[:200]
# Calculate position weights with tier structure (100% of portfolio)
growth_weights = self.calculate_tier_weights(top_200_growth, 1.0)
# Execute rebalancing
successful_trades = self.rebalance_to_targets(growth_weights)
# Enhanced logging
self.debug(f"Rebalanced: {len(growth_weights)} growth positions")
self.debug(f"Successfully executed {successful_trades}/{len(growth_weights)} trades")
# Log top picks with scores for verification
if len(growth_rankings) >= 10:
self.debug("=== TOP 5 GROWTH PICKS ===")
for i, symbol in enumerate(growth_rankings[:5]):
ticker = self.get_ticker(symbol)
score = growth_scores[symbol]
weight = growth_weights.get(symbol, 0)
self.debug(f"{i+1}. {ticker}: Score={score:.1f}, Weight={weight:.2%}")
self.last_rebalance = self.time
def calculate_growth_score_fundamental(self, fund):
"""
Calculate growth score using only fundamentals (higher = better)
70% YoY Revenue Growth + 30% ROE (quality growth proxy)
"""
try:
# Revenue growth component (70% weight)
revenue_growth = fund.operation_ratios.revenue_growth.one_year
if revenue_growth <= 0:
growth_component = 0
else:
growth_component = min(revenue_growth * 100, 50) # Cap at 50% for scoring
# ROE component (30% weight) - higher ROE = better quality growth
roe = fund.operation_ratios.roe.value
if roe <= 0:
roe_component = 0
else:
roe_component = min(roe * 100, 50) # Cap at 50% ROE for scoring
# Calculate weighted growth score
growth_score = (growth_component * 0.70) + (roe_component * 0.30)
return growth_score
except Exception:
return None
def rank_stocks(self, scores_dict, ascending=True):
"""Rank stocks by scores"""
sorted_items = sorted(scores_dict.items(), key=lambda x: x[1], reverse=not ascending)
return [symbol for symbol, score in sorted_items]
def calculate_tier_weights(self, ranked_symbols, total_weight):
"""
Calculate tier-based weights
Ranks 1-50: 50% of portfolio weight (1% each)
Ranks 51-100: 25% of portfolio weight (0.5% each)
Ranks 101-200: 25% of portfolio weight (0.25% each)
"""
weights = {}
# Tier 1: Ranks 1-50 get 50% of total weight
tier1_weight = (total_weight * 0.50) / 50 # 1% each
for i in range(min(50, len(ranked_symbols))):
weights[ranked_symbols[i]] = tier1_weight
# Tier 2: Ranks 51-100 get 25% of total weight
tier2_weight = (total_weight * 0.25) / 50 # 0.5% each
for i in range(50, min(100, len(ranked_symbols))):
weights[ranked_symbols[i]] = tier2_weight
# Tier 3: Ranks 101-200 get 25% of total weight
tier3_weight = (total_weight * 0.25) / 100 # 0.25% each
for i in range(100, min(200, len(ranked_symbols))):
weights[ranked_symbols[i]] = tier3_weight
return weights
def rebalance_to_targets(self, target_weights):
"""Execute rebalancing to target weights"""
# Liquidate positions not in target
current_holdings = {kvp.key for kvp in self.portfolio if kvp.value.invested}
for symbol in current_holdings:
if symbol not in target_weights:
self.liquidate(symbol)
# Set target positions
successful_trades = 0
failed_trades = 0
for symbol, target_weight in target_weights.items():
if target_weight > 0.0001: # Minimum position size
try:
# Check if security has valid price data
if symbol in self.securities and self.securities[symbol].price > 0:
self.set_holdings(symbol, target_weight)
successful_trades += 1
else:
failed_trades += 1
except Exception:
failed_trades += 1
continue
if failed_trades > 0:
self.debug(f"Failed to place {failed_trades} orders (likely due to missing price data)")
return successful_trades
def get_ticker(self, symbol):
"""Extract ticker from symbol"""
return str(symbol).split(' ')[0]
def on_data(self, data):
"""Handle incoming data"""
pass