| Overall Statistics |
|
Total Trades 4081 Average Win 0.00% Average Loss -0.04% Compounding Annual Return -2.286% Drawdown 8.200% Expectancy -0.138 Net Profit -5.284% Sharpe Ratio -0.618 Probabilistic Sharpe Ratio 0.112% Loss Rate 17% Win Rate 83% Profit-Loss Ratio 0.03 Alpha -0.018 Beta 0.002 Annual Standard Deviation 0.029 Annual Variance 0.001 Information Ratio -0.362 Tracking Error 0.218 Treynor Ratio -10.494 Total Fees $0.00 |
from MeanVarianceOptimizationPortfolioConstructionModel import *
class ForexTemplateAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2018,1,1)
self.SetEndDate(datetime.now() - timedelta(1))
self.signs = [
"USDCAD",
"EURUSD",
"USDCHF",
"EURGBP",
"GBPUSD",
"USDJPY",
]
self.symbols = [Symbol.Create(x, SecurityType.Forex, Market.Oanda) for x in self.signs]
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverseSelection(ManualUniverseSelectionModel(self.symbols))
self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, timedelta(1), 0.01, 0.05))
self.SetPortfolioConstruction(MeanVarianceOptimizationPortfolioConstructionModel())
self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02))
self.SetExecution(ImmediateExecutionModel())# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Indicators")
from System import *
from QuantConnect import *
from QuantConnect.Indicators import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Portfolio import *
from Portfolio.MinimumVariancePortfolioOptimizer import MinimumVariancePortfolioOptimizer
from datetime import timedelta
import numpy as np
import pandas as pd
### <summary>
### Provides an implementation of Mean-Variance portfolio optimization based on modern portfolio theory.
### The default model uses the MinimumVariancePortfolioOptimizer that accepts a 63-row matrix of 1-day returns.
### </summary>
class MeanVarianceOptimizationPortfolioConstructionModel(PortfolioConstructionModel):
def __init__(self,
rebalancingParam = Resolution.Daily,
portfolioBias = PortfolioBias.LongShort,
lookback = 1,
period = 63,
resolution = Resolution.Daily,
targetReturn = 0.02,
optimizer = None):
"""Initialize the model
Args:
rebalancingParam: Rebalancing parameter. If it is a timedelta, date rules or Resolution, it will be converted into a function.
If None will be ignored.
The function returns the next expected rebalance time for a given algorithm UTC DateTime.
The function returns null if unknown, in which case the function will be called again in the
next loop. Returning current time will trigger rebalance.
portfolioBias: Specifies the bias of the portfolio (Short, Long/Short, Long)
lookback(int): Historical return lookback period
period(int): The time interval of history price to calculate the weight
resolution: The resolution of the history price
optimizer(class): Method used to compute the portfolio weights"""
self.lookback = lookback
self.period = period
self.resolution = resolution
self.portfolioBias = portfolioBias
self.sign = lambda x: -1 if x < 0 else (1 if x > 0 else 0)
lower = 0 if portfolioBias == PortfolioBias.Long else -1
upper = 0 if portfolioBias == PortfolioBias.Short else 1
self.optimizer = MinimumVariancePortfolioOptimizer(lower, upper, targetReturn) if optimizer is None else optimizer
self.symbolDataBySymbol = {}
# If the argument is an instance of Resolution or Timedelta
# Redefine rebalancingFunc
rebalancingFunc = rebalancingParam
if isinstance(rebalancingParam, int):
rebalancingParam = Extensions.ToTimeSpan(rebalancingParam)
if isinstance(rebalancingParam, timedelta):
rebalancingFunc = lambda dt: dt + rebalancingParam
if rebalancingFunc:
self.SetRebalancingFunc(rebalancingFunc)
def ShouldCreateTargetForInsight(self, insight):
if len(PortfolioConstructionModel.FilterInvalidInsightMagnitude(self.Algorithm, [insight])) == 0:
return False
symbolData = self.symbolDataBySymbol.get(insight.Symbol)
if insight.Magnitude is None:
self.Algorithm.SetRunTimeError(ArgumentNullException('MeanVarianceOptimizationPortfolioConstructionModel does not accept \'None\' as Insight.Magnitude. Please checkout the selected Alpha Model specifications.'))
return False
symbolData.Add(self.Algorithm.Time, insight.Magnitude)
return True
def DetermineTargetPercent(self, activeInsights):
"""
Will determine the target percent for each insight
Args:
Returns:
"""
targets = {}
symbols = [insight.Symbol for insight in activeInsights]
# Create a dictionary keyed by the symbols in the insights with an pandas.Series as value to create a data frame
returns = { str(symbol) : data.Return for symbol, data in self.symbolDataBySymbol.items() if symbol in symbols }
returns = pd.DataFrame(returns)
# The portfolio optimizer finds the optional weights for the given data
weights = self.optimizer.Optimize(returns)
weights = pd.Series(weights, index = returns.columns)
# Create portfolio targets from the specified insights
for insight in activeInsights:
weight = weights[str(insight.Symbol)]
# don't trust the optimizer
if self.portfolioBias != PortfolioBias.LongShort and self.sign(weight) != self.portfolioBias:
weight = 0
targets[insight] = weight
return targets
def OnSecuritiesChanged(self, algorithm, changes):
'''Event fired each time the we add/remove securities from the data feed
Args:
algorithm: The algorithm instance that experienced the change in securities
changes: The security additions and removals from the algorithm'''
# clean up data for removed securities
super().OnSecuritiesChanged(algorithm, changes)
for removed in changes.RemovedSecurities:
symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None)
symbolData.Reset()
# initialize data for added securities
symbols = [ x.Symbol for x in changes.AddedSecurities ]
history = algorithm.History(symbols, self.lookback * self.period, self.resolution)
if history.empty: return
tickers = history.index.levels[0]
for ticker in tickers:
symbol = SymbolCache.GetSymbol(ticker)
if symbol not in self.symbolDataBySymbol:
symbolData = self.MeanVarianceSymbolData(symbol, self.lookback, self.period)
symbolData.WarmUpIndicators(history.loc[ticker])
self.symbolDataBySymbol[symbol] = symbolData
class MeanVarianceSymbolData:
'''Contains data specific to a symbol required by this model'''
def __init__(self, symbol, lookback, period):
self.symbol = symbol
self.roc = RateOfChange(f'{symbol}.ROC({lookback})', lookback)
self.roc.Updated += self.OnRateOfChangeUpdated
self.window = RollingWindow[IndicatorDataPoint](period)
def Reset(self):
self.roc.Updated -= self.OnRateOfChangeUpdated
self.roc.Reset()
self.window.Reset()
def WarmUpIndicators(self, history):
for tuple in history.itertuples():
self.roc.Update(tuple.Index, tuple.close)
def OnRateOfChangeUpdated(self, roc, value):
if roc.IsReady:
self.window.Add(value)
def Add(self, time, value):
item = IndicatorDataPoint(self.symbol, time, value)
self.window.Add(item)
@property
def Return(self):
return pd.Series(
data = [(1 + float(x.Value))**252 - 1 for x in self.window],
index = [x.EndTime for x in self.window])
@property
def IsReady(self):
return self.window.IsReady
def __str__(self, **kwargs):
return '{}: {:.2%}'.format(self.roc.Name, (1 + self.window[0])**252 - 1)