| Overall Statistics |
|
Total Trades 19 Average Win 3.29% Average Loss -6.03% Compounding Annual Return -99.859% Drawdown 33.500% Expectancy -0.656 Net Profit -33.464% Sharpe Ratio -6.689 Loss Rate 78% Win Rate 22% Profit-Loss Ratio 0.55 Alpha -6.284 Beta 156.561 Annual Standard Deviation 0.631 Annual Variance 0.398 Information Ratio -6.71 Tracking Error 0.631 Treynor Ratio -0.027 Total Fees $2253.00 |
import decimal as d
import numpy as np
import pandas as pd
import math
import datetime
import json
class DropboxBaseDataUniverseSelectionAlgorithm(QCAlgorithm):
def Initialize(self):
self.UniverseSettings.Resolution = Resolution.Minute;
self.SetStartDate(2019,1,8)
self.SetEndDate(2019,1,30)
self.SetCash(100000)
spy = self.AddEquity("SPY", Resolution.Minute) # add equity spy with minute resolution
spy.SetDataNormalizationMode(DataNormalizationMode.Raw)
self.AddUniverse(StockDataSource, "my-stock-data-source", self.stockDataSource) # add stock tickers from csv
self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 10), self.EveryDayBeforeMarketClose)
# on every trading day? why need this
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
def stockDataSource(self, data): # This will grab for each date and hour the different tickers in the csv and add them to the universe
list = []
for item in data:
for symbol in item["Symbols"]:
list.append(symbol)
#self.Debug(str(self.Time))
#self.Debug(str(list))
return list
def TradeOptions(self, contracts, ticker):
# run CoarseSelection method and get a list of contracts expire within 5 days from now on
# and the strike price between rank -1 to rank 1, rank being the step of the contract
filtered_contracts = self.CoarseSelection(ticker, contracts, -1, 1, 0, 15)
if len(filtered_contracts) >0:
## select one pair of long / put option with same strike price and closest expiry
expiry = sorted(filtered_contracts,key = lambda x: x.ID.Date, reverse=False)[0].ID.Date # Take the closest expiry
# filter the call options from the contracts expire on that date
call = [i for i in filtered_contracts if i.ID.Date == expiry and i.ID.OptionRight == 0]
# sorted the contracts according to their strike prices
call_contracts = sorted(call,key = lambda x: x.ID.StrikePrice)
self.call = call_contracts[0]
for i in filtered_contracts:
if i.ID.Date == expiry and i.ID.OptionRight == 1 and i.ID.StrikePrice ==call_contracts[0].ID.StrikePrice:
self.put = i
''' Before trading the specific contract, you need to add this option contract
AddOptionContract starts a subscription for the requested contract symbol '''
# self.call is the symbol of a contract
self.AddOptionContract(self.call, Resolution.Minute)
self.AddOptionContract(self.put, Resolution.Minute)
if not self.Portfolio.Invested:
self.SetHoldings(self.call.Value, 0.1)
self.SetHoldings(self.put.Value, 0.1)
# Some Logging
self.Log("Strike Price : "+str(self.call.ID.StrikePrice))
self.Log("Expiry : "+str(self.call.ID.Date))
self.Log("Call Mid-Point : "+str(self.Securities[self.call].Price))
#self.Log("IV : "+str(self.call.ImpliedVolatility))
else:
pass
def OnData(self, data):
if not self.Portfolio.Invested:
for symbol in data.Keys:
if symbol.Value == "SPY": continue
self.Log(symbol)
self.Log(symbol.SecurityType)
if symbol.SecurityType == 1:
#self.SetHoldings(key, 0.1)
stk = self.AddEquity(symbol.Value, Resolution.Minute) # add underlying equity
stk.SetDataNormalizationMode(DataNormalizationMode.Raw)
contracts = self.OptionChainProvider.GetOptionContractList(symbol, self.Time.date()) # Get list of strikes and expiries
self.TradeOptions(contracts, symbol.Value) # Select the right strikes/expiries and trade
def EveryDayBeforeMarketClose(self):
#self.Debug("############## Closing Position " + str(self.Time.date()) + " " + str(self.Time) + "############## ")
self.Liquidate()
self.Debug("Positions closed")
def CoarseSelection(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry):
''' This method implements the coarse selection of option contracts
according to the range of strike price and the expiration date,
this function will help you better choose the options of different moneyness '''
## step 1: filter the contracts based on the expiry range
contract_list = [i for i in symbol_list if min_expiry <= (i.ID.Date.date() - self.Time.date()).days < max_expiry]
self.Log("Ticker Und : " + str(underlyingsymbol))
self.Log("Nb of contract found : " + str(len(contract_list)))
self.Log("Underlying price : "+str(self.Securities[underlyingsymbol].Price))
## step 2: filter the contracts based on the strike price range
# find the strike price of ATM option
# It seems like sometimes OptionChainProvider.GetOptionContractList is bugging and returns nothing, so let's try/except
try :
atm_strike = sorted(contract_list,
key = lambda x: abs(x.ID.StrikePrice - self.Securities[underlyingsymbol].Price))[0].ID.StrikePrice
strike_list = sorted(set([i.ID.StrikePrice for i in contract_list]))
# find the index of ATM strike in the sorted strike list
atm_strike_rank = strike_list.index(atm_strike)
try:
min_strike = strike_list[atm_strike_rank + min_strike_rank]
max_strike = strike_list[atm_strike_rank + max_strike_rank]
except:
min_strike = strike_list[0]
max_strike = strike_list[-1]
# filter the contracts based on the range of the strike price rank
filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike]
except:
self.Debug("NO CONTRACT RETURNED -------")
filtered_contracts = None
return filtered_contracts
class StockDataSource(PythonData):
def GetSource(self, config, date, isLiveMode):
url = "https://www.dropbox.com/s/2az14r5xbx4w5j6/daily-stock-picker-live.csv?dl=1" if isLiveMode else \
"https://www.dropbox.com/s/ofzgxsp2b27pkri/quantconnect_triggers.csv?dl=1"
return SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile)
def Reader(self, config, line, date, isLiveMode):
#if not (line.strip() and line[0].isdigit()): return None
stocks = StockDataSource()
stocks.Symbol = config.Symbol
csv = line.rstrip(',').split(',') # rstrip is essential because quantconnect throws an empty element error (extra commas at the end of the csv)
if isLiveMode:
stocks.Time = date
stocks["Symbols"] = csv
else:
stocks.Time = datetime.datetime.combine(datetime.datetime.strptime(csv[0], "%Y%m%d"),
datetime.time(9, 31))
stocks["Symbols"] = csv[1:]
return stocks