| Overall Statistics |
|
Total Trades 24 Average Win 0.12% Average Loss -0.13% Compounding Annual Return -30.566% Drawdown 26.800% Expectancy 0.087 Net Profit -12.938% Sharpe Ratio -0.835 Probabilistic Sharpe Ratio 10.694% Loss Rate 43% Win Rate 57% Profit-Loss Ratio 0.90 Alpha -0.218 Beta 0.616 Annual Standard Deviation 0.324 Annual Variance 0.105 Information Ratio -0.868 Tracking Error 0.213 Treynor Ratio -0.438 Total Fees $30.58 |
class MultidimensionalTransdimensionalAntennaArray(QCAlgorithm):
def Initialize(self):
self.UniverseSettings.Resolution = Resolution.Minute
self.SetStartDate(2020, 1, 1)
self.Settings.RebalancePortfolioOnInsightChanges = False;
self.Settings.RebalancePortfolioOnSecurityChanges = False;
symbols = [Symbol.Create(ticker, SecurityType.Equity, Market.USA)
for ticker in [ "SPY", # US Large Cap ETF
"VEA", # Developed Foreign Stocks (TradedSince: 2007/8)ETF
"IEF", # US 10Y Gov.Bonds ETF
"DBC", # GSCI Commodities ETF (TradedSince: 2006/3)
"VNQ" # US RealEstate ETF
]]
self.AddUniverseSelection(ManualUniverseSelectionModel(symbols))
self.SetAlpha(ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, None));
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(self.RebalanceFunction))
self.SetExecution(ImmediateExecutionModel())
self.lastRebalanceMonth = -1
def RebalanceFunction(self, time):
# Rebalance at the open of the first trading day of each month
if self.Time.hour == 9 and self.Time.minute == 31 and self.Time.month != self.lastRebalanceMonth:
self.lastRebalanceMonth = self.Time.month
return time