| Overall Statistics |
|
Total Trades 711 Average Win 0.19% Average Loss -0.14% Compounding Annual Return 1.455% Drawdown 5.800% Expectancy 0.048 Net Profit 1.825% Sharpe Ratio 0.272 Loss Rate 57% Win Rate 43% Profit-Loss Ratio 1.42 Alpha 0.003 Beta 0.652 Annual Standard Deviation 0.055 Annual Variance 0.003 Information Ratio -0.066 Tracking Error 0.055 Treynor Ratio 0.023 Total Fees $718.11 |
#This is a Template of dynamic stock selection.
#You can try your own fundamental factor and ranking method by editing the CoarseSelectionFunction and FineSelectionFunction
from QuantConnect.Data.UniverseSelection import *
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
from QuantConnect.Data.Market import TradeBar
class BasicTemplateAlgorithm(QCAlgorithm):
def __init__(self):
# set the flag for rebalance
self.reb = 1
# Number of stocks to pass CoarseSelection process
self.num_coarse = 100
# Number of stocks to long/short
self.num_fine = 20
self.symbols = None
self.first_month = 0
self.topFine = None
def Initialize(self):
self.SetCash(100000)
self.SetStartDate(2015,1,1)
# if not specified, the Backtesting EndDate would be today
self.SetEndDate(2016,4,1)
self.Portfolio.MarginCallModel = MarginCallModel.Null;
############Trying to chart rolling 30 day performance################
#self.rollingPerformanceWindow = RollingWindow[decimal](30)
#self.rollingPerformanceWindow.Add(self.Portfolio.TotalPortfolioValue)
#self.Plot("Rolling Performance","Rolling Strategy Performance",(self.rollingPerformanceWindow[29] -self.rollingPerformanceWindow[0])/self.rollingPerformanceWindow[29])
self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol
self.UniverseSettings.Resolution = Resolution.Daily
self.UniverseSettings.Leverage = 4.0
self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)
# Schedule the rebalance function to execute at the begining of each month
self.Schedule.On(self.DateRules.MonthStart(self.spy),
self.TimeRules.AfterMarketOpen(self.spy,5), Action(self.rebalance))
def CoarseSelectionFunction(self, coarse):
# if the rebalance flag is not 1, return null list to save time.
if self.reb != 1:
return self.topFine if self.topFine is not None else []
# make universe selection once a month
# drop stocks which have no fundamental data or have too low prices
selected = [x for x in coarse if (x.HasFundamentalData)
and (float(x.Price) > 5)]
sortedByDollarVolume = sorted(selected, key=lambda x: x.DollarVolume, reverse=True)
top = sortedByDollarVolume[:self.num_coarse]
return [i.Symbol for i in top]
def FineSelectionFunction(self, fine):
# return null list if it's not time to rebalance
if self.reb != 1:
return self.topFine if self.topFine is not None else []
self.reb = 0
# drop stocks which don't have the information we need.
# you can try replacing those factor with your own factors here
filtered_fine = [x for x in fine if x.ValuationRatios.PBRatio]
self.Log('remained to select %d'%(len(filtered_fine)))
# rank stocks by three factor.
sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.FCFRatio, reverse=True)
#sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.FCFRatio, reverse=True)
#sortedByfactor1 = sorted(filtered_fine, key=lambda x: x.OperationRatios.ROIC.Value,reverse=True)
#sortedByfactor2 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.PSRatio)
#sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.BookValueYield)
#sortedByfactor3 = sorted(filtered_fine, key=lambda x: x.ValuationRatios.FCFRatio)
stock_dict = {}
# assign a score to each stock, you can also change the rule of scoring here.
for i,ele in enumerate(sortedByfactor1):
rank1 = i
#rank2 = sortedByfactor2.index(ele)
#rank3 = sortedByfactor3.index(ele)
score = sum([rank1])
stock_dict[ele] = score
# sort the stocks by their scores
self.sorted_stock = sorted(stock_dict.items(), key=lambda d:d[1],reverse=False)
sorted_symbol = [x[0] for x in self.sorted_stock]
# sotre the top stocks into the long_list and the bottom ones into the short_list
self.long = [x for x in sorted_symbol[:self.num_fine]]
self.short = [x for x in sorted_symbol[-self.num_fine:]]
self.topFine = [i.Symbol for i in self.long + self.short]
return self.topFine
def OnData(self, data):
pass
def rebalance(self):
if self.first_month == 0:
self.first_month += 1
return
# if this month the stock are not going to be long/short, liquidate it.
long_short_list = self.topFine
for i in self.Portfolio.Values:
if (i.Invested) and (i.Symbol not in long_short_list):
self.Liquidate(i.Symbol)
# Alternatively, you can liquidate all the stocks at the end of each month.
# Which method to choose depends on your investment philosiphy
# if you prefer to realized the gain/loss each month, you can choose this method.
#self.Liquidate()
#
#self.SetHoldings("SPY",1)
# Assign each stock equally. Alternatively you can design your own portfolio construction method
for i in self.long:
self.SetHoldings(i.Symbol, 0.5/self.num_fine)
for i in self.short:
self.SetHoldings(i.Symbol, -0.5/self.num_fine)
self.reb = 1