| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -22.219 Tracking Error 0.347 Treynor Ratio 0 Total Fees $0.00 |
class MomentumBasedTacticalAllocation(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2020, 1, 14)
self.SetCash(100000)
self.leveragedETFSymbol = "TQQQ"
self.minutesBeforeMarketClose = 10
self.movingAveragePeriod = 200
self.timeSmaPriceToString = ""
self.tqqq = self.AddEquity(self.leveragedETFSymbol, Resolution.Daily)
self.tqqqSMA = self.SMA(self.leveragedETFSymbol, self.movingAveragePeriod, Resolution.Daily)
self.Schedule.On(self.DateRules.EveryDay(self.leveragedETFSymbol), self.TimeRules.BeforeMarketClose(self.leveragedETFSymbol, self.minutesBeforeMarketClose), self.dailyStockComputations)
self.SetBenchmark(self.leveragedETFSymbol)
self.SetWarmUp(self.movingAveragePeriod)
def OnData(self, data):
if self.IsWarmingUp:
return
def dailyStockComputations(self):
if self.IsWarmingUp:
return
self.timeSmaPriceToString = "Time: " + str(self.Time) + ", SMA: "+str(self.tqqqSMA.Current.Value) +", 3xETF: "+str(self.Portfolio[self.leveragedETFSymbol].Price)
self.Debug(self.timeSmaPriceToString)