| Overall Statistics |
|
Total Orders 53828 Average Win 0.09% Average Loss -0.10% Compounding Annual Return 72.336% Drawdown 22.400% Expectancy 0.039 Start Equity 1000000.00 End Equity 2635996.60 Net Profit 163.600% Sharpe Ratio 2.061 Sortino Ratio 2.45 Probabilistic Sharpe Ratio 92.470% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 0.94 Alpha 0.437 Beta -0.061 Annual Standard Deviation 0.211 Annual Variance 0.044 Information Ratio 1.509 Tracking Error 0.254 Treynor Ratio -7.123 Total Fees $0.00 Estimated Strategy Capacity $290000.00 Lowest Capacity Asset BTCUSDT 18N Portfolio Turnover 8109.23% |
#region imports
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Globalization;
using System.Linq;
using System.Text;
using Newtonsoft.Json;
using QuantConnect;
using QuantConnect.Algorithm;
using QuantConnect.Algorithm.Framework;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Portfolio.SignalExports;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Algorithm.Selection;
using QuantConnect.Api;
using QuantConnect.Benchmarks;
using QuantConnect.Brokerages;
using QuantConnect.Commands;
using QuantConnect.Configuration;
using QuantConnect.Data;
using QuantConnect.Data.Auxiliary;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Custom;
using QuantConnect.Data.Custom.IconicTypes;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.Shortable;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.DataSource;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using QuantConnect.Notifications;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
using QuantConnect.Orders.Fills;
using QuantConnect.Orders.OptionExercise;
using QuantConnect.Orders.Slippage;
using QuantConnect.Orders.TimeInForces;
using QuantConnect.Parameters;
using QuantConnect.Python;
using QuantConnect.Scheduling;
using QuantConnect.Securities;
using QuantConnect.Securities.Crypto;
using QuantConnect.Securities.CryptoFuture;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities.Forex;
using QuantConnect.Securities.Future;
using QuantConnect.Securities.IndexOption;
using QuantConnect.Securities.Interfaces;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Positions;
using QuantConnect.Securities.Volatility;
using QuantConnect.Statistics;
using QuantConnect.Storage;
using QuantConnect.Util;
using Calendar = QuantConnect.Data.Consolidators.Calendar;
using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm;
using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm;
#endregion
namespace QuantConnect.Algorithm.CSharp
{
public class CryptoExampleStrategyPublic : QCAlgorithm
{
public static string ModelParamsFileName = "baseline_model_params.json";
public static string ThresholdArrayFileName = "baseline_threshold_array.json";
public class ModelParams
{
[JsonProperty("feature_cols")]
public string[] FeatureCols { get; set; }
[JsonProperty("coefficients")]
public decimal[] Coefficients { get; set; }
[JsonProperty("intercept")]
public decimal Intercept { get; set; }
[JsonProperty("center")]
public decimal[] Center { get; set; }
[JsonProperty("scale")]
public decimal[] Scale { get; set; }
}
// Ring buffer for prediction history
private class RingBuffer<T>
{
private T[] _buffer;
private DateTime[] _timestamps;
private int _size;
private int _currentIndex;
private int _count;
public RingBuffer(int size)
{
_size = size;
_buffer = new T[size];
_timestamps = new DateTime[size];
_currentIndex = 0;
_count = 0;
}
public void Add(DateTime timestamp, T item)
{
_timestamps[_currentIndex] = timestamp;
_buffer[_currentIndex] = item;
_currentIndex = (_currentIndex + 1) % _size;
if (_count < _size)
_count++;
}
public int Count => _count;
public T GetByIndex(int index)
{
if (index < 0 || index >= _count)
throw new IndexOutOfRangeException();
int actualIndex = (_currentIndex - _count + index + _size) % _size;
return _buffer[actualIndex];
}
public DateTime GetTimestampByIndex(int index)
{
if (index < 0 || index >= _count)
throw new IndexOutOfRangeException();
int actualIndex = (_currentIndex - _count + index + _size) % _size;
return _timestamps[actualIndex];
}
public T GetLatest()
{
if (_count == 0)
throw new InvalidOperationException("Buffer is empty");
int index = (_currentIndex - 1 + _size) % _size;
return _buffer[index];
}
public DateTime GetLatestTimestamp()
{
if (_count == 0)
throw new InvalidOperationException("Buffer is empty");
int index = (_currentIndex - 1 + _size) % _size;
return _timestamps[index];
}
public List<T> GetItems()
{
List<T> result = new List<T>(_count);
for (int i = 0; i < _count; i++)
{
int index = (_currentIndex - _count + i + _size) % _size;
result.Add(_buffer[index]);
}
return result;
}
public List<KeyValuePair<DateTime, T>> GetAllWithTimestamps()
{
List<KeyValuePair<DateTime, T>> result = new List<KeyValuePair<DateTime, T>>(
_count
);
for (int i = 0; i < _count; i++)
{
int index = (_currentIndex - _count + i + _size) % _size;
result.Add(new KeyValuePair<DateTime, T>(_timestamps[index], _buffer[index]));
}
return result;
}
public List<T> GetItemsInTimeRange(DateTime startTime, DateTime endTime)
{
List<T> result = new List<T>();
for (int i = 0; i < _count; i++)
{
int index = (_currentIndex - _count + i + _size) % _size;
if (_timestamps[index] >= startTime && _timestamps[index] <= endTime)
{
result.Add(_buffer[index]);
}
}
return result;
}
}
// Prediction record to track accuracy
private class PredictionRecord
{
public decimal Probability { get; set; }
public decimal EntryPrice { get; set; }
public bool? IsCorrect { get; set; } // null means not yet determined
}
private enum ModelState
{
Normal,
Reversed,
NotReliable,
}
private Symbol _btcusdt;
private ModelParams _modelParams;
private decimal[] _thresholdArr;
private bool _modelLoaded = false;
private decimal _positionSize = 0.98m;
private decimal _leverage = 1.0m;
private decimal _enterPositionThreshold = 0.04m;
private decimal _exitPositionThreshold = 0.60m;
private decimal _takeProfitTarget = 0.008m;
private decimal _stopLossLevel = 5m;
// Min accuracy threshold for normal operation
private decimal _normalThreshold = 0.40m; // TODO
// Max accuracy threshold for reversed operation
private decimal _reversedThreshold = 0.35m; // TODO
// Min number of predictions needed to evaluate accuracy
private int _minPredictionsForAccuracy = 30; // half in 30, half in 60, // TODO
private ModelState _currentModelState = ModelState.Normal;
private DateTime _positionEntryTime;
private bool _inLongPosition = false;
private bool _inShortPosition = false;
private decimal _entryPrice = 0m;
private int _positionHoldingWindow = 10;
private int _earlyProfitMinHoldingTime = 1;
private RingBuffer<decimal> _predictionHistory;
private RingBuffer<decimal> _priceHistory;
private RingBuffer<PredictionRecord> _predictionRecords; // Records for accuracy tracking
private int _maxPredictionHistory => 60 + _positionHoldingWindow + _earlyProfitMinHoldingTime; // TODO
private List<TradeRecord> _tradeRecords = new List<TradeRecord>();
private class TradeRecord
{
public DateTime EntryTime { get; set; }
public DateTime ExitTime { get; set; }
public decimal EntryPrice { get; set; }
public decimal ExitPrice { get; set; }
public string Direction { get; set; }
public decimal PnL { get; set; }
public string ExitReason { get; set; }
public ModelState ModelStateAtEntry { get; set; }
public decimal OriginalPrediction { get; set; }
public decimal AdjustedPrediction { get; set; }
}
public override void Initialize()
{
// SetStartDate(2023, 1, 1);
SetStartDate(2023, 7, 1);
// SetStartDate(2023, 10, 1);
// SetStartDate(2024, 8, 1);
// SetEndDate(2024, 6, 1);
// SetEndDate(2024, 9, 1);
// SetEndDate(2023, 7, 1);
SetEndDate(DateTime.Now);
// SetAccountCurrency("USDT", 1_000_000);
SetAccountCurrency("USD", 1_000_000);
// SetCash("USDT", 0);
SetBrokerageModel(new DefaultBrokerageModel());
SetTimeZone(TimeZones.Utc);
// We use 2x leverage for quantconnect live paper trading for the high sharpe ratio
if (LiveMode)
{
_positionSize = 0.98m;
_leverage = 2.0m;
}
var security = AddCrypto(
"BTCUSDT",
Resolution.Minute,
LiveMode ? null: Market.Binance,
fillForward: true,
leverage: _leverage
);
// security.SetFeeModel(new ConstantFeeModel(0.0m));
_btcusdt = security.Symbol;
_predictionHistory = new RingBuffer<decimal>(_maxPredictionHistory);
_priceHistory = new RingBuffer<decimal>(_maxPredictionHistory + _positionHoldingWindow + _earlyProfitMinHoldingTime);
_predictionRecords = new RingBuffer<PredictionRecord>(_maxPredictionHistory);
// Reload model every 00:00 UTC
// Schedule.On(
// DateRules.EveryDay("BTCUSDT"),
// TimeRules.At(new TimeSpan(00, 00, 00)),
// LoadModelParameters
// );
// Reset state machine at start of each day
// Schedule.On(
// DateRules.EveryDay("BTCUSDT"),
// TimeRules.At(00, 00, 01), // Just after midnight
// ResetStateMachine
// );
// Liquidate at the start of each day
// Schedule.On(
// DateRules.EveryDay("BTCUSDT"),
// TimeRules.At(00, 00, 05), // Just after midnight
// CheckAndLiquidateForNonTestDays
// );
// Schedule evaluation of past predictions
Schedule.On(
DateRules.EveryDay("BTCUSDT"),
TimeRules.Every(TimeSpan.FromMinutes(1)),
EvaluatePastPredictions
);
ResetStateMachine();
LoadModelParameters();
LoadThresholdArray();
}
private void ResetStateMachine()
{
if (_currentModelState != ModelState.Normal)
{
Log(
$"Resetting state machine. Previous state: {_currentModelState}"
);
}
_currentModelState = ModelState.Normal;
Log(
$"State machine reset for {Time.Date:yyyy-MM-dd}. Now in {_currentModelState} state."
);
}
private void EvaluatePastPredictions()
{
var predictions = _predictionRecords.GetAllWithTimestamps();
if (predictions.Count == 0) return;
// Look through past predictions that need evaluation
foreach (var pair in predictions)
{
DateTime predictionTime = pair.Key;
PredictionRecord record = pair.Value;
// Skip already evaluated predictions
if (record.IsCorrect.HasValue) continue;
// Calculate the evaluation window end
DateTime evalStartTime = predictionTime.AddMinutes(_earlyProfitMinHoldingTime);
DateTime evalEndTime = predictionTime.AddMinutes(_earlyProfitMinHoldingTime + _positionHoldingWindow);
// If we're past the evaluation window, check if prediction was correct
if (Time >= evalEndTime)
{
// Get prices from our price history buffer
var pricesInWindow = _priceHistory.GetItemsInTimeRange(evalStartTime, evalEndTime);
if (pricesInWindow.Count > 0)
{
// Calculate average price in the window
decimal avgPrice = pricesInWindow.Average();
// Determine if prediction was correct
bool priceWentUp = avgPrice > record.EntryPrice;
bool predictedUp = record.Probability > 0.5m;
// Set prediction correctness
record.IsCorrect = (predictedUp == priceWentUp);
Log($"Evaluated prediction from {predictionTime}: predicted {(predictedUp ? "UP" : "DOWN")}, " +
$"actual {(priceWentUp ? "UP" : "DOWN")}, correct: {record.IsCorrect}");
}
else
{
Log($"Warning: No price data found for window {evalStartTime} to {evalEndTime}. Cannot evaluate prediction from {predictionTime}.");
}
}
}
// Update model state based on prediction accuracy
UpdateModelState();
}
private void UpdateModelState()
{
var predictions = _predictionRecords.GetItems();
// Only evaluated predictions
var evaluatedPredictions = predictions.Where(p => p.IsCorrect.HasValue).ToList();
// Need minimum number of predictions to make a determination
if (evaluatedPredictions.Count < _minPredictionsForAccuracy)
{
Log($"Not enough evaluated predictions ({evaluatedPredictions.Count}/{_minPredictionsForAccuracy}) to determine accuracy");
return;
}
// Calculate accuracy
int correctCount = evaluatedPredictions.Count(p => p.IsCorrect.Value);
decimal accuracy = (decimal)correctCount / evaluatedPredictions.Count;
ModelState previousState = _currentModelState;
// Update state based on accuracy
if (accuracy >= _normalThreshold)
{
_currentModelState = ModelState.Normal;
}
else if (accuracy <= _reversedThreshold)
{
_currentModelState = ModelState.Reversed;
}
else
{
_currentModelState = ModelState.NotReliable;
}
if (previousState != _currentModelState)
{
Log($"State transition: {previousState} -> {_currentModelState} based on prediction accuracy of {accuracy:P2} " +
$"(correct: {correctCount}/{evaluatedPredictions.Count})");
}
}
public override void OnData(Slice slice)
{
Log($"[OnData] - {Time} - Before Check {_btcusdt}, _modelLoaded {_modelLoaded}");
if (!slice.Bars.ContainsKey(_btcusdt) || !_modelLoaded)
return;
Log($"[OnData] - {Time} - After Check: {slice.Bars[_btcusdt]}");
var bar = slice.Bars[_btcusdt];
_priceHistory.Add(Time, bar.Close);
decimal[] features = CalculateFeatures(bar);
decimal originalPredictProb = PredictProbability(features);
decimal adjustedPredictProb = AdjustPredictionByState(originalPredictProb);
decimal percentile = GetProbabilityPercentile(adjustedPredictProb);
_predictionHistory.Add(Time, originalPredictProb);
// Add to prediction records for later accuracy evaluation
_predictionRecords.Add(Time, new PredictionRecord
{
Probability = originalPredictProb,
EntryPrice = bar.Close,
IsCorrect = null // Will be evaluated later
});
// Calculate current prediction accuracy
string accuracyStr = "N/A";
var evaluatedPredictions = _predictionRecords.GetItems().Where(p => p.IsCorrect.HasValue).ToList();
if (evaluatedPredictions.Count >= _minPredictionsForAccuracy)
{
int correctCount = evaluatedPredictions.Count(p => p.IsCorrect.Value);
decimal accuracy = (decimal)correctCount / evaluatedPredictions.Count;
accuracyStr = $"{accuracy:P2} ({correctCount}/{evaluatedPredictions.Count})";
}
Log(
$"[OnData] - Time: {Time}, Price: {bar.Close}, Original Prediction: {originalPredictProb:F4}, "
+ $"Adjusted Prediction: {adjustedPredictProb:F4}, Percentile: {percentile:P2}, State: {_currentModelState}, "
+ $"Accuracy: {accuracyStr}"
);
bool shouldBeLong = percentile >= (1m - _enterPositionThreshold / 2m);
bool shouldBeShort = percentile <= (_enterPositionThreshold / 2m);
bool shouldExitLong = percentile <= (_exitPositionThreshold / 2m);
bool shouldExitShort = percentile >= (1m - _exitPositionThreshold / 2m);
// Don't take positions if model is NotReliable
if (_currentModelState == ModelState.NotReliable)
{
shouldBeLong = false;
shouldBeShort = false;
}
bool holdingTimeElapsed = false;
bool earlyProfitTimeElapsed = false;
decimal currentPnlPercent = 0m;
if (_inLongPosition || _inShortPosition)
{
TimeSpan holdingTime = Time - _positionEntryTime;
holdingTimeElapsed = holdingTime.TotalMinutes >= _positionHoldingWindow;
earlyProfitTimeElapsed = holdingTime.TotalMinutes >= _earlyProfitMinHoldingTime;
if (_inLongPosition)
{
currentPnlPercent = (bar.Close - _entryPrice) / _entryPrice * 100m;
}
else if (_inShortPosition)
{
currentPnlPercent = (_entryPrice - bar.Close) / _entryPrice * 100m;
}
if (holdingTimeElapsed)
{
Log($"Position holding window of {_positionHoldingWindow} minutes elapsed");
}
}
bool takeProfitTriggered =
earlyProfitTimeElapsed && currentPnlPercent >= _takeProfitTarget;
bool stopLossTriggered = currentPnlPercent <= -_stopLossLevel;
if (_inLongPosition)
{
// Exit if:
// 1. opposite signal
// 2. holding time elapsed
// 3. exit threshold reached
// 4. take profit target hit
// 5. stop loss triggered
if (
shouldBeShort
|| holdingTimeElapsed
|| shouldExitLong
|| takeProfitTriggered
|| stopLossTriggered
)
{
string reason =
shouldBeShort ? "Opposite signal"
: holdingTimeElapsed ? "Holding time elapsed"
: takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F4}%"
: stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F4}%"
: "Exit threshold reached";
ClosePosition(
"LONG",
bar.Close,
reason,
originalPredictProb,
adjustedPredictProb
);
}
}
else if (_inShortPosition)
{
// Exit if:
// 1. opposite signal
// 2. holding time elapsed
// 3. exit threshold reached
// 4. take profit target hit
// 5. stop loss triggered
if (
shouldBeLong
|| holdingTimeElapsed
|| shouldExitShort
|| takeProfitTriggered
|| stopLossTriggered
)
{
string reason =
shouldBeLong ? "Opposite signal"
: holdingTimeElapsed ? "Holding time elapsed"
: takeProfitTriggered ? $"Take profit target hit: {currentPnlPercent:F4}%"
: stopLossTriggered ? $"Stop loss triggered: {currentPnlPercent:F4}%"
: "Exit threshold reached";
ClosePosition(
"SHORT",
bar.Close,
reason,
originalPredictProb,
adjustedPredictProb
);
}
}
// Enter new positions if we're not already in a position
if (!_inLongPosition && !_inShortPosition)
{
if (shouldBeLong)
{
EnterLong(bar.Close, originalPredictProb, adjustedPredictProb);
}
else if (shouldBeShort)
{
EnterShort(bar.Close, originalPredictProb, adjustedPredictProb);
}
}
}
private decimal AdjustPredictionByState(decimal originalPrediction)
{
switch (_currentModelState)
{
case ModelState.Normal:
// No adjustment needed
return originalPrediction;
case ModelState.Reversed:
// Invert the prediction (1-p)
return 1m - originalPrediction;
case ModelState.NotReliable:
// Just return 0.5 (no clear signal)
return 0.5m;
default:
return originalPrediction;
}
}
private void EnterLong(
decimal price,
decimal originalPrediction,
decimal adjustedPrediction
)
{
SetHoldings(_btcusdt, _positionSize * _leverage);
_inLongPosition = true;
_inShortPosition = false;
_positionEntryTime = Time;
_entryPrice = price;
Log(
$"ENTERED LONG at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}"
);
var trade = new TradeRecord
{
EntryTime = Time,
EntryPrice = price,
Direction = "LONG",
ModelStateAtEntry = _currentModelState,
OriginalPrediction = originalPrediction,
AdjustedPrediction = adjustedPrediction,
};
_tradeRecords.Add(trade);
}
private void EnterShort(
decimal price,
decimal originalPrediction,
decimal adjustedPrediction
)
{
SetHoldings(_btcusdt, -_positionSize * _leverage);
_inShortPosition = true;
_inLongPosition = false;
_positionEntryTime = Time;
_entryPrice = price;
Log(
$"ENTERED SHORT at {Time}, Price: {price}, Position Size: {_positionSize * _leverage}, Model State: {_currentModelState}"
);
var trade = new TradeRecord
{
EntryTime = Time,
EntryPrice = price,
Direction = "SHORT",
ModelStateAtEntry = _currentModelState,
OriginalPrediction = originalPrediction,
AdjustedPrediction = adjustedPrediction,
};
_tradeRecords.Add(trade);
}
private void ClosePosition(
string positionType,
decimal price,
string reason,
decimal originalPrediction,
decimal adjustedPrediction
)
{
Liquidate(_btcusdt);
decimal pnl = 0;
if (positionType == "LONG")
{
pnl = (price - _entryPrice) / _entryPrice * 100;
_inLongPosition = false;
}
else
{
pnl = (_entryPrice - price) / _entryPrice * 100;
_inShortPosition = false;
}
Log(
$"EXITED {positionType} at {Time}, Price: {price}, PnL: {pnl:F4}%, Reason: {reason}, Model State: {_currentModelState}"
);
if (_tradeRecords.Count > 0)
{
var lastTrade = _tradeRecords[_tradeRecords.Count - 1];
lastTrade.ExitTime = Time;
lastTrade.ExitPrice = price;
lastTrade.PnL = pnl;
lastTrade.ExitReason = reason;
}
}
private decimal[] CalculateFeatures(TradeBar bar)
{
decimal[] features = new decimal[_modelParams.FeatureCols.Length];
int hour = Time.Hour;
int minute = Time.Minute;
decimal dayPct = (hour * 60 + minute) / (24m * 60m);
for (int i = 0; i < _modelParams.FeatureCols.Length; i++)
{
switch (_modelParams.FeatureCols[i])
{
case "close_open_ratio":
features[i] = bar.Close / bar.Open;
break;
case "high_low_ratio":
features[i] = bar.High / bar.Low;
break;
case "day_pct":
features[i] = dayPct;
break;
default:
Log($"Unknown feature: {_modelParams.FeatureCols[i]}");
features[i] = 0;
break;
}
}
return features;
}
/// <summary>
/// This method is written just for fun! Don't use it in your production code :P
/// </summary>
/// <param name="o0O0"></param>
/// <returns></returns>
private string O0o0o(string o0O0)
{
byte[] OO0o = Convert.FromBase64String(o0O0);
string o0O0O = "VHJpdG9uIFF1YW50aXRhdGl2ZSBUcmFkaW5nIEAgVUNTRA=="; // What's this?
byte[] O0o0 = Encoding.UTF8.GetBytes(o0O0O);
byte[] o00O = new byte[OO0o.Length];
for (int o = 0; o < OO0o.Length; o++)
{
byte O0 = OO0o[o];
byte o0 = O0o0[o % O0o0.Length];
byte O0o = (byte)(O0 ^ o0);
byte o00 = 0;
for (int i = 0; i < 8; i++)
{
o00 = (byte)((o00 << 1) | (O0o & 1));
O0o >>= 1;
}
o00O[o] = o00;
}
return Encoding.UTF8.GetString(o00O);
}
private void LoadModelParameters()
{
Log($"Model parameters file {ModelParamsFileName} not found.");
// NOTE: base64 is used for encoding string easier in C# code, I can simply use the direct base64 transformation, but the additional manipulation is for fun :)
string defaultModelJsonStr = O0o0o("8NYYxj6tW3lvXBQHQxtHXidK4P6W0S50yOUwmyWhNF17G6mAE6/tAZDjLFjUqyGrZIrI5uKlDwPPJNr/H5sTVqfuMGTirXCkaJHAwzmPJMd7m3c4b4cTQWSXzMLIDaELDP4Qfv4LD0MPMAxvywHD1ovGXoZWEe6+qHngS5FP9MeTdb9wO2/LKyR/xMpgg7/TZB7IbhZtkyv7GPT96wHjHBMOtPbWEfasKJGss1FHxMXTdbcw+xPz6+QL5HjgY5/TpGrYPBYRu2tTjKjXy+EDnke6OPb+CwbcfJHQOfGvSoVTAbeAOxvreSQD7BjgY9sRJBbIfJZt7/n70KjXy+FHBicuGF6i0f5eyDGMS1E7xKXzdZfA+2fDieQDqPigY5+RpGKcnhYZ71m7hKjX65UZ3tN6+OQWbca+KHno2RFH7OcTfZ/iO28bQWSXzMKUDU8rEKrg5pbRezP7hGrf63W3rhMGtPaWZcb+6AXImRFPgMcTCYdwe4fDiWQDzLrgY/tx5GrQ3JZti2v7ZJC9Kwmv/JNytKb2Ze6c6HGUu5FHgPXTAafw+xPT+eQD3MrgF08bMML2zA==");
try
{
Log($"defaultModelJsonStr: {defaultModelJsonStr}");
string jsonModelStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultModelJsonStr));
_modelParams = JsonConvert.DeserializeObject<ModelParams>(jsonModelStr);
Log($"Default Model Params Loaded:\n{jsonModelStr}");
_modelLoaded = true;
}
catch (Exception ex)
{
Log($"Error loading model parameters: {ex.Message}");
Log($"Exception type: {ex.GetType().Name}");
if (ex.InnerException != null)
{
Log($"Inner exception: {ex.InnerException.Message}");
}
_modelLoaded = false;
}
return;
}
private void LoadThresholdArray()
{
Log($"Threshold array file {ThresholdArrayFileName} not found.");
string defaultThresholdArrayStr = O0o0o("vBbI3tZlu5u7ZOzfK3WnvBNylPaWZfYe6A3A2ZGnqI3TlRkwOxvDSyQLzEogF+tjpGqM/NZli1n72KjX65UZPNN60HYWZcYsKHnoGdEzzKfTfdMie4fDiWQDxEoga7dxJBbYLpZtk3m7ZOSdq323blOa0IZWEeasKHnQ+REz1OcTfeMw+xPD+eR3xNhgg7/TZB7ALtYRm+v7GPSvK3W33tN6hMSWbbr8yHHA+xFP9KcTCadw+xvLS+R/1Jiga6fTpIqkltaFFXk7ZNQv63W/HNMGhMQWGc4e6HGkC1GvxIVTAb9iO2/LyyQL3Njga+sRJGLInhYRm7vbZMSfK3W/HBMO+DbWZcY+qHGEmRE77PXTCb+g22fDySR35EogY78RJGKcLpZl//k7ENw9q3W//vN60MYWZcZsqHGUu5FH1HWTdZ8i+2/zK+SfoLLggxExJGLQbtYR72s7ZMT96wm33pN6lDZWhe7caAXI2ZFP1DXTCYdiu2fjeSR/iPiga/vzxGrI3hZlo5v7EPTf633z3tNy8DbWbeZs6M2ss9GvamcTAZfCu2+nSyQLzAogH5eRJGrgvFaFu5t7EMx96wmvHBN6lCTWZap+6AWk2dEz3GdTlbeAexPLKyR/3BggY9sj5B6svNYZk/n7EID/y3W3nhN6yCQWGarc6HGUS5FH7HXTfbfw+xvbqcR3zPogY6cR5GKcnpZlm3m7bOQvKwmnrtPGvI7WhUA+KAWU2RFP7MfTdbci+xuXK+QD3Mpgg7/TZB7AvNZl/yv7bICvK3XTHNNyyGSWZeY+aJHAu1E7zKfTfdNC+xPzOaR//Mrga9sRJGqsfFaFu5t7EMz96wHjHJN6lESWbf5+6HHYGdFP9KXzdbfAO2eHa+R35LqgY7ex5GLAXJZto9k7bNz/y3W3nhN6lOTWbc5+KHGky9FHxHXTfdMwu2/bqcR3zPogY/tx5GLIPBZl35v7ZNz9KwGHnNN6yKb2Ze6cKHGEmdFPgHXTCbcw+xPTeeQL7Lqga/vzxGrI3hZl/7m7bJBv6wmXrhMGwMSWZf7cqJmss9GvamcTCdNCO2/rK+R/iAqgY5/xJBbI/FaFu5t7EMz9q32vPBNy0DYWGYr+6A3Y+RE7kKXzdbfAO2enieQLqFjgF5cxJBac7tZtk5s7ZID/y3W3nhN6tHbWZYoeKA2Uy5FP1GcTfafiOxPbqcR3zPogY9sjpGrIfJZlo2v7ZPR96wG/rhNy2Kb2Ze6cKHGkyxFH5OcTfZeA+2/DeeR/mPjgH6fzxGrI3hZl3yv7ENSvq3WnLtMGwGQWbe5+6HHYm/FPxMUTddMwu2eXqyR31JigY6ejJB7QbhaF15P7hGo9q3W/vBMO2ETWbfYsKA2US9E7xHVTlbeAexPLSyR/3LrgF6fx5Bb4fJZl39m7bOz/y3W3nhN6tOSWZfY+KHmEC9Ez1DXTAadiOxvrqcR3zPogY9txJGrAntYR/7k7bIBv6wmXrpOavI7WhUA+qHGEu9FHxMfTAfPwO2fr+eR3qLog19Pb5IpmfJZl//k7GNyd6wmv/JN6lKTWGfa+aJHAu1E7zEeTdZdw+xvba6R/3LrgY48xJGr4fFaFu5t7EMwdq3WvLhMG2CQWGc7+6A2Ey9E7gDVTlbeAexPLS6R/7MrgF5/T5Bbg3BYZs3k7hKjX65UZPJN6hCTWGcZ+6A3YmREz9KfTCfMiO9uvgeSXYliga78j5B7ovBZl3/n7ZNQvq33jvNPGvI7WhUA+qHnAGRFPzEeTdbfi+xvjS+QLmErg39Pb5IpmfJZtm2s7GOz9q3WX/BNy2IaWbYrcKJGss9GvameTfZciOxPLeSQDzLogY5dxJGr47laFu5t7EMyd6wGXfBN6+KQWGaosKAXI+ZFHkCdTlbeAexPLy+QD1FjgH9uxpGqc/BZls5u7ZJD/y3W3nhN6hDbWbeZs6HGkedE77IWTdZdiO9OvgeSXYliga49xJGrIbpZlm2u7bIDfK3W/nBOSvI7WhUA+qHnIuxE75GfTdeNCO2/zqyQL7Pggi9Pb5IpmfJZts3m7ZMR9632XfBN6wDYWZaoeKMWss9GvameTfb9C+xvDeaR3iPggH4+xJB7ofFaFu5t7EMydK32X/BMO0PYWZaoeqHHguxE73DVTlbeAexPLyyR/5AogY5/TJB7IbtYZi/k7bKD/y3W3nhN6hOSWZd5+qHHQ+ZFP3OcTda/iO2fbqcR3zPogY+uxpGLIXNZt71k7EOy96wnzLtNylKb2Ze6cKHGU2ZFH9PWTdeNiO2fDiSQL7EqgY/vzxGrI3hZl7/m7bOz9K33j3tNyyOSWZbr+KJGss9GvameTfZ/Cu2fT+aR35Pgga78R5GqMLhaF15P7hGo9q32v3tN68DaWbbp+6AXYeZFPgGcTlduI+4dta6R/1LrgF5ex5Gr4PNYRm3m7bJAva5W33lMO2MQWEe6+6HHg+ZFHzCfTdbcwe4fDiWQDxPggF79xpGqM7tZti/n7bOwd6wG//vN60MYWZbp+6HGUCxFP5KfTAacwOxvbeeTDoLLggxExpGLQbtZtm9n7GJAvK3W3PNNy8HbW2YLU6JFuWZFH3HXTCa8i+xvriSR35HggF+vzxGrI3hZl7zn7bOy9632ffJNytKTWGd6eKA3om/FPxMUTdeMi+2+Hy6R35Mqga6+xJBbIvBaN15P7hGo9q32vLpNytDYWGeYeqHngmdE71GdTlbeAexPLyyQD3MrgH7/x5GqsPNYRoyv7bNRva5W33lMO2MQWEf4+6Hno+dE7oOfTAeNw+xvbqcR3zPogY+tx5B7QPNYR31m7ZOy9q33jPNMG4Kb2Ze6cKHGUGdE7oGeTdZeAu2eHieQD1Jjg39Pb5IpmfJZtoyv7ZJC963WvnNN6+HYWbc4s6M2ss9GvameTfa8w+xvTKyQD1LrgF7ejJB7QvvZlu9s7ZJB96wmfrhMGwOTWZe6eKHHo2RHzqI3TlRliu2/bOSQL5HjgF5cj5BasnhYZ71l7hMTfawG/nBMO4MQWbbo+6A3gGZFP1CfTAb+ie4fDiWQDxPggF7ej5GrQLpZtq1n7GNRv6323vFOa0IZWEeaeKAXIC5FH5CfTfYdC+2eX+SR/iJrAY7+TJGqcPBZloyu7ZOz9K32nfNMGlMQWZcb8yHHA+xFPkCcTddPwu2fzS+QDxMrga7+j5GLgvvZlu9s7ZJB9K323/NN6lOSWZf6s6A3Y+dEz3KXzdbfAO2eXKyR/3Ngga+vxpGLQ/NYRi1n7jKjX65UZPJNyyOQWbe6sqHnISxEzxOcTfZ/we4fDiWQDxPggF5dxpGqsbhYRiys7bOydK33jfFOa0IZWEeaeKAXo+dEz7HXTAZ+i+2fTy+R/zNhgg7/TZB7A3BYRo2v7EOyd6wGfrpN62ETWbYpsaJHAu1E7zMcTAa8wOxOHOeR/zMrgY+tj5GL4vFaFu5t7EMydKwGvfNNy2PYWGd7c6HnAWRE77KdTlbeAexPLyyQD1HjgY59xJBacvJZlmys7bNz/y3W3nhN6hCQWGe5+6HGUWdFPgHXTCbdCO9OvgeSXYliga6fx5BbIbtZti9n7GMwvKwHzHFOa0IZWEeaeKAWE2RFHoKfTAbei+xPTy+R/zNhgg7/TZB7A3BYR/1k7ZPSd6wnzHNN6tGTWZe6+aJHAu1E7zMcTAdOAu2/j6yR/1JggH9sxpGLgvvZlu9s7ZJB9q3WHbhNywMTWZe6+6AXA+dEz9KXzdbfAO2eXK6R35Higa+sR5GLoXNYZuys7bPT/y3W3nhN6hCSWZYpsKAWUWRFHzIUTAePi+2/LqcR3zPogY+txpGLIXNYZ75u7bIAd6wHjrpOavI7WhUA+qHnY+dEz9IWTdfNi+xvDyyQL5Hhgg7/TZB7A3BYR7zn7bMy9KwmfrpN64DaWjYLU6JFuWZFH3MeTddMiO2/L6+R3xLogY5ejZIrInlYRs9k7GMTfq32HvNNyhDYWZfb+6HHwC1GvxIVTAb/COxvDOSR3xHiga9vTJB6cLhYZsyt7hMTfawG/nBMG0CTWbYr+KHmEmdFHgGfTfaeg22fDySR3mJjgY9tj5GKc/NYZ7yu7ZNyd6wGf/vN60MYWZbr+6HnAGRFHkKcTdfPC+xuHiSQDxJrAY7+TJGqcvNZti+s7ENRv6wGHHJN6hKQWbfb8yHHA+xFPkKfTfa9wO2/zieQL7MrgY68j5GrAvvZlu9s7ZJD9633TfNMOwCSWbc6s6A2kC9E79KXzdbfAO2eXq+QD7Lqga69jJGLYPBZl//n70KjX65UZPJNylPbWGcZ+6AXASxFHzHUTCa+ie4fDiWQDxPggH69x5B6c7pZl7/k7GOQvq3Wn/FOa0IZWEeaeKA3QeRFHxHXTCb9iu2+X+SR/qJrAY7+TJGqcvNYZu9k7GOTf632X/BMG4PYWhYLU6JFuWZFHgDXTAdPw+xvTK+QDiMrgY9vxJNakltaFFXm7bIBvK32nnNMOhDbWbaqe6HGUCxH7qI3TlRliu2+HOSQL7Fgga58RJGrAfNZt/1l7hMTfawG/nBMG4MQWEc4+qHHo2REz3GfTCZdie4fDiWQDxPggH7cjJGrQvNZtm5v7ZJDfKwHT/vN60MYWZbr+KHHw+dEz3KeTdYci+xOnq6SfoLLggxExpGKMfBZt/1m7bMRvq32v3tPGvI7WhUA+qHmE2RFH3DUTdZfCOxvz6yQL3Ngg39Pb5IpmfJZt/1n7bIDf633jnJN6lPYWZfY+aJHAu1E7zMeTdZdiO2+XeeQL7Hjga6eRJGqsvvZlu9s7ZJAdK3XTPNMOlKTWGf4s6Hnw+VGvxIVTAb/Cu2enOaR/zPjgH48x5B7AfBaN15P7hGo9q33jLpNy4DYWGe6e6HHgWRFHgKcTyduI+4dta6R/mNggY+uRJGKs7hZt//m7bICda5W33lMO2MSWbbqs6HmUGREzoMfTCadwOxPTqcR3zPoga7/T5BbIbtZlqzk7EIDf63W3HJOSvI7WhUC+6HHAmdE79IWTdePwO2+XyyQLiHhgg7/TZB7gntZtmzn7ZIC9q33T/NMO4CTWbar8yHHA+xFHxHUTAafi+xOnK+R/mMrga4+xJIqkltaFFfn7ZNTfq32XnBN6hCTWZcb+KHmUWVGvxIVTAZ+A+xPrS+QD/Mqga+txJBas/BZl77vbZMSfK323btN6tMTWGaqsKAXQGdE73MeTlduI+4dt6+R3/Niga/sjJB7gLhYR73m7ZJC9a5W33lMO+IYWZc7+KHGEWZFP5CfTAYfwe4fDiWQD5LogY/uj5BbQntYRq2v7bKCd6wGv/vN60MYWbe6+6A3AyxFPkKfTdbciu2+HK+TLoLLggxGx5GrgXBYR/7n7ZID9K3WXLhN6yHZWhe7caAXouxE7zKfTfa8iO2fTiaR/mLqgY+vzxGrI3hZtu7n7ZMx96wHjnJNywCQWGfb+6MWss9GvaufTdfMi+2+XeaR/3PjgH6djJGLYfFaFu5t7EOzfq3WnbpNy4IbWEeY+KAXA+dFH1KXzdbfAO2/DS6R35MogF5+jJGLAPBYR32s70KjX65UZvNN6hGSWbeZsKHHAu9E7oGfTda8we4fDiWQD5ErgY5/x5BacPBYRozm7ZOSvK3Wf/vN60MYWbc7cqHHwedFPzMcTCbfwu2eXOaSfoLLggxGx5GLo/NYZi+u7bJCd6wG3fNNytERWhe7caAXoS9E71CfTAeOAu2+ny+QDxNjgH6/zxGrI3hZtmyv7ZOS96wG3bhMG0ESWZboeKMWss9GvaufTfYeiO2fTeaR3mHjgF48x5Grg3FaFu5t7EOwvK3WfLtN6wPbWbfb+6AXQC5FH5KXzdbfAO2/j6+QD1Mrga59j5GL4fJZlu5v70KjX65UZvNNyyIbWbaqe6AWECxEzxPUTda9ie4fDiWQD5EogF9vTJGLoLhYRm7n7bPRv6wnT/vN60MYWbc7+KAXI2dFH1KfTdafi+2fTq2SXzLpgF5cjpGrAXNZt/7k7ZMR9K3WHrtN6yKb2Ze6cKHng+dEzoGcTAbdC+xuHiaR3/Log39Pb5Ipm/NYRu+u7ZMRvq33j3hN62MQWGf7+aJHAu1E77PXTfYcwOxPbqyQDqFjga9vT5Bb4vvZlu9s7bNSv6wnjLhN6yGTWbcb+6A2kmRHzqI3TlRni+xPz6+R/3BggY7/x5GrYPBZlq7vbZMSfK32nPBMO4PbWZaqsqHnwWdEz3EdTlbeAexPr+SR/iMrga6eRJGLA3NYZs5s7ZNz/y3W3nhNywCSWZfZ+KHnouxE7xDXTCdPCu4+vgeSXYtjgF9vTpGLInhYZu9k7ZID9KwGffFOa0IZWEcasqHnwC5FP3PUTdfMiOxOnq6R/qJrAY7+TJGL4nhYZs9k7ENyvKwGnLpNywOQWhYLU6JFu2dEz1DXTfb/w+xPrOaR31Aoga6eRZIrInlYRkyv7GKCdKwmv3tNyyCTWEeY+qHmkm/FPxMUTfYfiO2/DKyQLmLogY+sjJGqcfJaN15P7hGq96wnzLpNywMTWEfZ+KA3Y+RFHkDVTlbeAexPrOaR3mFiga4+RJGr4XNZts/k7bMz/y3W3nhNy2IaWZcZ+KA3oyxFP3GeTfbcie4fDiWQD5FjgF9vxJBbQ7pZtu9n7bJCvK3W//vN60MYWbeY+qHnY+RE7zKeTdZfw+2eH66SfoLLggxGxJGqMLpZt33n7bID9KwGvfJN60PZWhe7caAXoWZFHkHUTCZ/i+2+nqyQD7Hjga5fzxGrI3hZtk+s7bKB96wGfnNMG4HbWGd7+KMWss9GvaucTfZ+i+2/D+SQDxJjgH7fxJGrA7laFu5t7EOy9q32XnNN62MTWEeZ+qHHYCxEzzKXzdbfAO2/b+aR/5BggF7eRpGKsPNYRi1n72KjX65UZvBMOlOTWZaq+qHmkWRFHxIUTda/ie4fDiWQD5JjgH49x5GrofBYZi5u7ZOyvK33T/vN60MYWbaqeqHHg+REz5EcTAadw+2+XKySXoLLggxGxpGqsLpZts3n7bPQ96wHTbtMGlDZWhe7caAXYu9FP1MeTfePw+2fTeSQL3ErgY9vzxGrI3hYRm9n7ZIDfKwHjbhNy+EQWGeYe6M2ss9GvaicTfb/i+xvzq+R33ErgY/ujJGKcvvZlu9u7bJCdKwnzPNMG2KQWGe6+KAXQyxEHStc=");
try
{
Log($"defaultThresholdArrayStr: {defaultThresholdArrayStr}");
string jsonThresholdArrayStr = Encoding.UTF8.GetString(Convert.FromBase64String(defaultThresholdArrayStr));
Log($"Default Threshold Array Loaded:\n{jsonThresholdArrayStr}");
_thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonThresholdArrayStr);
}
catch (Exception ex)
{
Log($"Error loading ThresholdArrayStr: {ex.Message}");
Log($"Exception type: {ex.GetType().Name}");
if (ex.InnerException != null)
{
Log($"Inner exception: {ex.InnerException.Message}");
}
}
return;
// string jsonStr = ObjectStore.Read(ThresholdArrayFileName);
// try
// {
// _thresholdArr = JsonConvert.DeserializeObject<decimal[]>(jsonStr);
// var formattedJson = JsonConvert.SerializeObject(_thresholdArr, Formatting.None);
// Log($"Threshold array loaded with {_thresholdArr.Length} values. Array: {formattedJson}\nBase64: {Convert.ToBase64String(Encoding.UTF8.GetBytes(formattedJson))}");
// }
// catch (Exception ex)
// {
// Log($"Error deserializing threshold array JSON: {ex.Message}");
// InitializeDefaultThresholdArray();
// }
}
private void InitializeDefaultThresholdArray()
{
// Create a default threshold array with 200 points (0.5% resolution)
// Values will be distributed according to a Gaussian (Normal) distribution
int arraySize = 200;
_thresholdArr = new decimal[arraySize];
double mean = 0.5;
double stdDev = 0.15;
for (int i = 0; i < arraySize; i++)
{
double x = (double)i / (arraySize - 1);
// Apply sigmoid function to approximate Gaussian CDF
// This gives a reasonable S-shaped curve similar to the normal distribution CDF
double z = (x - mean) / stdDev;
double probability = 1.0 / (1.0 + Math.Exp(-z * 1.702));
_thresholdArr[i] = (decimal)probability;
}
Array.Sort(_thresholdArr);
Log(
$"Initialized default threshold array with {arraySize} Gaussian-distributed values."
);
}
private decimal PredictProbability(decimal[] features)
{
// sklearn RobustScaler equivalent
decimal[] scaledFeatures = new decimal[features.Length];
for (int i = 0; i < features.Length; i++)
{
scaledFeatures[i] = (features[i] - _modelParams.Center[i]) / _modelParams.Scale[i];
}
decimal logit = _modelParams.Intercept;
for (int i = 0; i < scaledFeatures.Length; i++)
{
logit += scaledFeatures[i] * _modelParams.Coefficients[i];
}
decimal prob = 1m / (1m + (decimal)Math.Exp(-(double)logit));
return prob;
}
private decimal GetProbabilityPercentile(decimal probability)
{
// If threshold array is not loaded, initialize it with default values
if (_thresholdArr == null || _thresholdArr.Length == 0)
{
InitializeDefaultThresholdArray();
}
int index = Array.BinarySearch(_thresholdArr, probability);
if (index >= 0)
{
return (decimal)index / (_thresholdArr.Length - 1);
}
else
{
// No direct match - get the insertion point
int insertPoint = ~index;
if (insertPoint == 0)
{
return 0m; // Probability is lower than all values in the array
}
else if (insertPoint >= _thresholdArr.Length)
{
return 1m; // Probability is higher than all values in the array
}
else
{
// Interpolate between the two closest points
decimal lowerProb = _thresholdArr[insertPoint - 1];
decimal upperProb = _thresholdArr[insertPoint];
decimal lowerPct = (decimal)(insertPoint - 1) / (_thresholdArr.Length - 1);
decimal upperPct = (decimal)insertPoint / (_thresholdArr.Length - 1);
// Linear interpolation
decimal ratio = (probability - lowerProb) / (upperProb - lowerProb);
return lowerPct + ratio * (upperPct - lowerPct);
}
}
}
}
}